Home
Class 12
MATHS
An ordered triplet solution (x,y,z) with...

An ordered triplet solution (x,y,z) with x,y,z `int` (0,1) and satisfying `x^(2)+y^(2)+z^(2) + 2xyz=1` is

A

`(cospi/6, cos (7pi)/18, cos(4pi)/9)`

B

`(cos (2pi)/5, cos(pi)/3, cos pi/10)`

C

`(cos (7pi)/12, cospi/4, cos pi/6)`

D

`(cos pi/12, cos (4pi)/9, cos (17pi)/36)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + y^2 + z^2 + 2xyz = 1 \) for ordered triplet solutions \((x, y, z)\) where \(x, y, z \in [0, 1]\), we can follow these steps: ### Step 1: Analyze the Equation The equation \( x^2 + y^2 + z^2 + 2xyz = 1 \) resembles the equation of a sphere in three dimensions. We need to find integer solutions for \(x\), \(y\), and \(z\) that lie within the interval \([0, 1]\). ### Step 2: Check Boundary Values Since \(x\), \(y\), and \(z\) can only take values 0 or 1, we can check these combinations: - \( (0, 0, 0) \) - \( (0, 0, 1) \) - \( (0, 1, 0) \) - \( (0, 1, 1) \) - \( (1, 0, 0) \) - \( (1, 0, 1) \) - \( (1, 1, 0) \) - \( (1, 1, 1) \) ### Step 3: Substitute Values We will substitute each combination into the equation to see if it satisfies \( x^2 + y^2 + z^2 + 2xyz = 1 \). 1. For \( (0, 0, 0) \): \[ 0^2 + 0^2 + 0^2 + 2 \cdot 0 \cdot 0 \cdot 0 = 0 \quad \text{(not a solution)} \] 2. For \( (0, 0, 1) \): \[ 0^2 + 0^2 + 1^2 + 2 \cdot 0 \cdot 0 \cdot 1 = 1 \quad \text{(solution)} \] 3. For \( (0, 1, 0) \): \[ 0^2 + 1^2 + 0^2 + 2 \cdot 0 \cdot 1 \cdot 0 = 1 \quad \text{(solution)} \] 4. For \( (0, 1, 1) \): \[ 0^2 + 1^2 + 1^2 + 2 \cdot 0 \cdot 1 \cdot 1 = 2 \quad \text{(not a solution)} \] 5. For \( (1, 0, 0) \): \[ 1^2 + 0^2 + 0^2 + 2 \cdot 1 \cdot 0 \cdot 0 = 1 \quad \text{(solution)} \] 6. For \( (1, 0, 1) \): \[ 1^2 + 0^2 + 1^2 + 2 \cdot 1 \cdot 0 \cdot 1 = 2 \quad \text{(not a solution)} \] 7. For \( (1, 1, 0) \): \[ 1^2 + 1^2 + 0^2 + 2 \cdot 1 \cdot 1 \cdot 0 = 2 \quad \text{(not a solution)} \] 8. For \( (1, 1, 1) \): \[ 1^2 + 1^2 + 1^2 + 2 \cdot 1 \cdot 1 \cdot 1 = 5 \quad \text{(not a solution)} \] ### Step 4: Collect Solutions From our checks, the valid ordered triplet solutions are: - \( (0, 0, 1) \) - \( (0, 1, 0) \) - \( (1, 0, 0) \) ### Final Answer The ordered triplet solutions \((x, y, z)\) that satisfy the equation \( x^2 + y^2 + z^2 + 2xyz = 1 \) are: \[ (0, 0, 1), (0, 1, 0), (1, 0, 0) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

Find the number of triplets (x, y, z) of integers satisfying the equations x + y = 1 - z and x^(3) + y^(3) =1-z^(2) (where z ne 1 )

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

The equation "cosec " x/2 + " cosec " y/2 + " cosec " z/2=6 , where 0 lt x, y,z lt pi/2 and x+y+z=pi , have i) Three Ordered triplet (x,y,z)solutions ii) Two ordered triplet (x,y,z) solutions. iii) Just one ordered triplet (x,y,z) solution iv) No ordered triplet (x,y,z) solution

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

If x^(2)+y^(2)+z^(2)=1"for " x,y,z inR, then the maximum value of x^(3)+y^(3)+z^(3)-3xyz is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  2. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  3. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  4. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  5. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  6. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  7. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  8. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  9. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  10. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  11. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  12. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  13. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  14. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |

  15. In a triangle ABC

    Text Solution

    |

  16. If cosA + cosB =4sin^(2)(C/2), then

    Text Solution

    |

  17. In a triangle ABC, points D and E are taken on side BC such that BD= D...

    Text Solution

    |

  18. In a triangle, with usual notations, the length of the bisector of ang...

    Text Solution

    |

  19. An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfyin...

    Text Solution

    |

  20. In a triangle ABC, acosB + b cosC + c cosA =(a+b+c)/2 then

    Text Solution

    |