Home
Class 12
MATHS
In a triangle ABC, acosB + b cosC + c co...

In a `triangle ABC`, acosB + b cosC + c cosA `=(a+b+c)/2` then

A

Triangle in isosceles

B

Triangle may be equilateral

C

`sin(A-B) + sin(B-C) + sin(C-A)=3/2`

D

`4sin( (A-B)/2) sin((B-C)/2) sin((C-A)/2)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that in triangle \( ABC \), if \( a \cos B + b \cos C + c \cos A = \frac{a + b + c}{2} \), then the triangle is equilateral. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a \cos B + b \cos C + c \cos A = \frac{a + b + c}{2} \] This is our equation (1). 2. **Use the cosine rule to express \( \cos A \), \( \cos B \), and \( \cos C \):** - From the cosine rule, we have: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] 3. **Substitute these values into equation (1):** \[ a \left( \frac{a^2 + c^2 - b^2}{2ac} \right) + b \left( \frac{a^2 + b^2 - c^2}{2ab} \right) + c \left( \frac{b^2 + c^2 - a^2}{2bc} \right) = \frac{a + b + c}{2} \] 4. **Simplify the left-hand side:** \[ \frac{a^2 + c^2 - b^2}{2c} + \frac{a^2 + b^2 - c^2}{2a} + \frac{b^2 + c^2 - a^2}{2b} \] 5. **Combine the fractions:** To combine these fractions, we can find a common denominator, which is \( 2abc \): \[ \frac{b(a^2 + c^2 - b^2) + c(a^2 + b^2 - c^2) + a(b^2 + c^2 - a^2)}{2abc} \] 6. **Expand and simplify the numerator:** After expanding and combining like terms, we will have: \[ A^3B + B^3C + C^3A - (A^2B^2 + B^2C^2 + C^2A^2) = 0 \] This means that the terms must balance out. 7. **Analyze the resulting equation:** The equation \( A^3B - C + B^3C - A + C^3A - B = 0 \) implies that \( A = B = C \) (the triangle is equilateral). 8. **Conclusion:** Therefore, if \( a \cos B + b \cos C + c \cos A = \frac{a + b + c}{2} \), then it must be that \( a = b = c \), meaning triangle \( ABC \) is equilateral.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, we have acosB+bcosC+ccosA=(a+b+c)/2 where A, B, C are internal angles and a, b,c are length of sides opposite to them respectively.Then must be

In a triangle ABC cosA+cosB+cosC<=k then k=

In as triangle ABC prove that: cos (A+B)+cosC=0

In any triangle, prove that bcosB + c cosC= a cos(B-C) .

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC the expression a cosB cosC+b cosA cosB equals to :

In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-C (Objective Type Questions More than one options are correct )
  1. If sintheta= a for e xactly one value of theta in [0,(7pi)/3], then ...

    Text Solution

    |

  2. If sin theta + sqrt(3) cos theta = 6x - x^(2) - 11, 0 le theta le 4 p...

    Text Solution

    |

  3. Solve the equation sinx + sqrt(3)cosx=sqrt(2)

    Text Solution

    |

  4. (1-tanx)/(1+tanx)=tanyandx-y=pi/6,t h e nx , y

    Text Solution

    |

  5. The possible value of theta in [-pi, pi] satisfying the equation 2(co...

    Text Solution

    |

  6. The number of all possible triplets (p, q, r) such that p + qcos2theta...

    Text Solution

    |

  7. Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

    Text Solution

    |

  8. Find the coordinates of the points of intersection of the curves y=cos...

    Text Solution

    |

  9. A value of theta satifying 4costheta sintheta - 2sintheta =0 is

    Text Solution

    |

  10. The equation sinx+sin2x+2sinxsin2x=2cosx+cos2x is satisfied by values ...

    Text Solution

    |

  11. The solution set of sin 3theta + cos 2theta = 0 iss

    Text Solution

    |

  12. The general solution of the equation 2^(cos2x)+1=3*2^(-sin^2x) is

    Text Solution

    |

  13. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  14. In a triangle ABC,a/b=2+sqrt(3) and /C=60^(@) then angle A and B is

    Text Solution

    |

  15. In a triangle ABC

    Text Solution

    |

  16. If cosA + cosB =4sin^(2)(C/2), then

    Text Solution

    |

  17. In a triangle ABC, points D and E are taken on side BC such that BD= D...

    Text Solution

    |

  18. In a triangle, with usual notations, the length of the bisector of ang...

    Text Solution

    |

  19. An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfyin...

    Text Solution

    |

  20. In a triangle ABC, acosB + b cosC + c cosA =(a+b+c)/2 then

    Text Solution

    |