Home
Class 12
MATHS
Statement:1 : Minimum value of sinx + " ...

Statement:1 : Minimum value of `sinx + " cosec "x` is 2 for all `x in (0,pi)` and Statement 2: Min`(sinx + " cosec "x)=2, AA x in R`

A

Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

B

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct expanation for statement-1

C

Statement-1 is True, Statement-2 is false

D

Statement-1 is False, Statement-2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements regarding the function \( f(x) = \sin x + \csc x \). ### Step 1: Understanding the Function We start with the function: \[ f(x) = \sin x + \csc x \] where \( \csc x = \frac{1}{\sin x} \). ### Step 2: Domain of the Function The function \( f(x) \) is defined for \( x \) in the interval \( (0, \pi) \) because \( \sin x \) is positive in this interval, making \( \csc x \) defined. ### Step 3: Applying AM-GM Inequality We apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{a + b}{2} \geq \sqrt{ab} \] for \( a = \sin x \) and \( b = \csc x \). Thus, \[ \frac{\sin x + \csc x}{2} \geq \sqrt{\sin x \cdot \csc x} \] Since \( \csc x = \frac{1}{\sin x} \), we have: \[ \sin x \cdot \csc x = 1 \] This leads to: \[ \frac{\sin x + \csc x}{2} \geq \sqrt{1} = 1 \] Multiplying both sides by 2 gives: \[ \sin x + \csc x \geq 2 \] ### Step 4: Finding the Minimum Value The equality in the AM-GM inequality holds when \( a = b \), which means: \[ \sin x = \csc x \implies \sin^2 x = 1 \implies \sin x = 1 \] This occurs at \( x = \frac{\pi}{2} \). ### Step 5: Evaluating the Function at \( x = \frac{\pi}{2} \) Calculating \( f\left(\frac{\pi}{2}\right) \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) + \csc\left(\frac{\pi}{2}\right) = 1 + 1 = 2 \] ### Conclusion Thus, the minimum value of \( f(x) = \sin x + \csc x \) for \( x \in (0, \pi) \) is indeed 2, occurring at \( x = \frac{\pi}{2} \). ### Final Statements - **Statement 1**: Minimum value of \( \sin x + \csc x \) is 2 for all \( x \in (0, \pi) \) is **true**. - **Statement 2**: Minimum of \( \sin x + \csc x = 2 \) for all \( x \in \mathbb{R} \) is **false** because the function is not defined for \( x \in \mathbb{R} \) (only defined for \( x \in (0, \pi) \)).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Statement-1: f(x ) = log_( cosx)sinx is well defined in (0,pi/2) . and Statement:2 sinx and cosx are positive in (0,pi/2)

The minimum value of |sinx+cosx+tanx+secx+"cosec"x+cotx| , is

Statement:1 The number of real solution of the equation sinx = 4^(x) + 4^(-x) is zero. And Statement-2: |sinx| lt 1 AA x in R .

The value of sin(pi+x).sin(pi-x)."cosec"^(2)x is

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

The least values of cosec^(2) x + 25 sec^(2)x is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

If 0ltxlt(pi)/(2) , then the minimum value of (sinx+cosx+cosec2x) ,is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section E (Assertion-Reason Types Questions)
  1. Statement-1: sinx = siny rArr x =y. and Statement-2: sinx = siny hav...

    Text Solution

    |

  2. Statement-1: f(x ) = log( cosx)sinx is well defined in (0,pi/2). and ...

    Text Solution

    |

  3. Statement:1 : Minimum value of sinx + " cosec "x is 2 for all x in (0,...

    Text Solution

    |

  4. Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D), then the values...

    Text Solution

    |

  5. Statement:1 if cos theta=1/7 and cos phi = 13/14 where theta and phi b...

    Text Solution

    |

  6. Statement:1: The value of k for which (costheta- sintheta)^(2) + k sin...

    Text Solution

    |

  7. Statement:1 If theta is acute and 1+ costheta = k, then sin (theta/2) ...

    Text Solution

    |

  8. Statement-1: In an acute angled triangle minimum value of tan alpha + ...

    Text Solution

    |

  9. Statement-1: The equation 3 cosx + 4sinx =6 has no solution. and Sta...

    Text Solution

    |

  10. Statement-1: The general solution of 2^(sinx) + 2^( cosx)= 2^(1-1/sqrt...

    Text Solution

    |

  11. Statement:1: If sum (r=1)^(n) sin(x(r)) = n, then sum(n=1)^(n) cot (x(...

    Text Solution

    |

  12. Statement:1 The number of real solution of the equation sinx = 4^(x) +...

    Text Solution

    |

  13. Statement-1: The general solution of tan 5theta = cot 2theta is theta ...

    Text Solution

    |

  14. Statement-1: If triangleABC, 3bc=(a-b+c)(a+b-c) then A=120^(@). and ...

    Text Solution

    |

  15. ABCD is a quadrilateral in which a circle is inscribed. Statement:1 ...

    Text Solution

    |

  16. Statement:1 In triangleABC, if a lt b sinA, then the triangle is possi...

    Text Solution

    |

  17. Let ABCD be a cyclic quadrilateral then Statement:1 sinA + sinB+ sin...

    Text Solution

    |

  18. Statement I In a triangle ABC if tan A: tan B: tan C=1 :2:3, then A=...

    Text Solution

    |