Home
Class 12
MATHS
Statement:1 if cos theta=1/7 and cos phi...

Statement:1 if `cos theta=1/7` and `cos phi = 13/14` where `theta` and `phi` both are acute angles, then the value of `theta-phi` is `pi/3`. Statement:2 `cos(pi/3)=1/2`

A

Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

B

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct expanation for statement-1

C

Statement-1 is True, Statement-2 is false

D

Statement-1 is False, Statement-2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify the statements given: **Statement 1:** If \( \cos \theta = \frac{1}{7} \) and \( \cos \phi = \frac{13}{14} \), where \( \theta \) and \( \phi \) are acute angles, then \( \theta - \phi = \frac{\pi}{3} \). **Statement 2:** \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). ### Step-by-step Solution: 1. **Use the Cosine Difference Identity:** We know that: \[ \cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \] Given that \( \theta - \phi = \frac{\pi}{3} \), we can write: \[ \cos(\theta - \phi) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] 2. **Substituting Known Values:** Substitute \( \cos \theta \) and \( \cos \phi \) into the identity: \[ \frac{1}{2} = \left(\frac{1}{7}\right) \left(\frac{13}{14}\right) + \sin \theta \sin \phi \] 3. **Calculate \( \cos \theta \cos \phi \):** \[ \cos \theta \cos \phi = \frac{1}{7} \cdot \frac{13}{14} = \frac{13}{98} \] 4. **Rearranging the Equation:** Substitute \( \cos \theta \cos \phi \) back into the equation: \[ \frac{1}{2} = \frac{13}{98} + \sin \theta \sin \phi \] Rearranging gives: \[ \sin \theta \sin \phi = \frac{1}{2} - \frac{13}{98} \] 5. **Finding a Common Denominator:** The common denominator for \( \frac{1}{2} \) and \( \frac{13}{98} \) is \( 98 \): \[ \frac{1}{2} = \frac{49}{98} \] Thus: \[ \sin \theta \sin \phi = \frac{49}{98} - \frac{13}{98} = \frac{36}{98} = \frac{18}{49} \] 6. **Finding \( \sin \theta \) and \( \sin \phi \):** Now we need to find \( \sin \theta \) and \( \sin \phi \): - For \( \theta \): \[ \cos^2 \theta + \sin^2 \theta = 1 \implies \sin^2 \theta = 1 - \left(\frac{1}{7}\right)^2 = 1 - \frac{1}{49} = \frac{48}{49} \] Thus, \( \sin \theta = \frac{\sqrt{48}}{7} = \frac{4\sqrt{3}}{7} \). - For \( \phi \): \[ \cos^2 \phi + \sin^2 \phi = 1 \implies \sin^2 \phi = 1 - \left(\frac{13}{14}\right)^2 = 1 - \frac{169}{196} = \frac{27}{196} \] Thus, \( \sin \phi = \frac{\sqrt{27}}{14} = \frac{3\sqrt{3}}{14} \). 7. **Calculating \( \sin \theta \sin \phi \):** Now calculate: \[ \sin \theta \sin \phi = \left(\frac{4\sqrt{3}}{7}\right) \left(\frac{3\sqrt{3}}{14}\right) = \frac{12 \cdot 3}{98} = \frac{36}{98} = \frac{18}{49} \] 8. **Final Verification:** We have: \[ \sin \theta \sin \phi = \frac{18}{49} \] This matches our earlier calculation, confirming that: \[ \cos(\theta - \phi) = \frac{1}{2} \] Therefore, Statement 1 is true. 9. **Verification of Statement 2:** From trigonometric values, we know: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Thus, Statement 2 is also true. ### Conclusion: Both statements are true, and Statement 2 serves as a correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If cos2theta=sin4theta , where 2theta and 4theta are acute angles, find the value of theta .

If tantheta=(1)/(2) and tanphi=(1)/(3) , then the value of theta+phi is

If tantheta=1/(2) and tanphi=1/(3) , then the value of (theta+phi) is

If cos(theta-phi) , cos(theta) , cos(theta+phi) are in HP, the the value of cos(theta)sec(phi/2) is

If 3 tan theta tan phi=1 , then prove that 2 cos (theta+phi)=cos (theta-phi) .

(sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta

If cos theta=12/13 , and (3pi)/2 le theta lt 2pi , then tan theta = ?

If theta and phi are acute angles satisfying sin theta=1/2, cos phi=1/3 then theta+phi=

If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section E (Assertion-Reason Types Questions)
  1. Statement-1: sinx = siny rArr x =y. and Statement-2: sinx = siny hav...

    Text Solution

    |

  2. Statement-1: f(x ) = log( cosx)sinx is well defined in (0,pi/2). and ...

    Text Solution

    |

  3. Statement:1 : Minimum value of sinx + " cosec "x is 2 for all x in (0,...

    Text Solution

    |

  4. Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D), then the values...

    Text Solution

    |

  5. Statement:1 if cos theta=1/7 and cos phi = 13/14 where theta and phi b...

    Text Solution

    |

  6. Statement:1: The value of k for which (costheta- sintheta)^(2) + k sin...

    Text Solution

    |

  7. Statement:1 If theta is acute and 1+ costheta = k, then sin (theta/2) ...

    Text Solution

    |

  8. Statement-1: In an acute angled triangle minimum value of tan alpha + ...

    Text Solution

    |

  9. Statement-1: The equation 3 cosx + 4sinx =6 has no solution. and Sta...

    Text Solution

    |

  10. Statement-1: The general solution of 2^(sinx) + 2^( cosx)= 2^(1-1/sqrt...

    Text Solution

    |

  11. Statement:1: If sum (r=1)^(n) sin(x(r)) = n, then sum(n=1)^(n) cot (x(...

    Text Solution

    |

  12. Statement:1 The number of real solution of the equation sinx = 4^(x) +...

    Text Solution

    |

  13. Statement-1: The general solution of tan 5theta = cot 2theta is theta ...

    Text Solution

    |

  14. Statement-1: If triangleABC, 3bc=(a-b+c)(a+b-c) then A=120^(@). and ...

    Text Solution

    |

  15. ABCD is a quadrilateral in which a circle is inscribed. Statement:1 ...

    Text Solution

    |

  16. Statement:1 In triangleABC, if a lt b sinA, then the triangle is possi...

    Text Solution

    |

  17. Let ABCD be a cyclic quadrilateral then Statement:1 sinA + sinB+ sin...

    Text Solution

    |

  18. Statement I In a triangle ABC if tan A: tan B: tan C=1 :2:3, then A=...

    Text Solution

    |