Home
Class 12
MATHS
Statement-1: If triangleABC, 3bc=(a-b+c)...

Statement-1: If `triangleABC, 3bc=(a-b+c)(a+b-c)` then `A=120^(@)`.
and Statement-2: `cos 120^(@)=-1/2`

A

Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

B

Statement-1 is true, Statement-2 is true, Statement-2 is not a correct expanation for statement-1

C

Statement-1 is True, Statement-2 is false

D

Statement-1 is False, Statement-2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given statements and derive the necessary conclusions step by step. ### Step 1: Understand the Given Condition We are given the condition for triangle ABC: \[ 3BC = (A - B + C)(A + B - C) \] ### Step 2: Rewrite the Equation We can rewrite the right-hand side: \[ (A - B + C)(A + B - C) = A^2 - (B - C)^2 \] This is based on the identity \( (x - y)(x + y) = x^2 - y^2 \). ### Step 3: Substitute into the Condition Substituting this back into our equation gives: \[ 3BC = A^2 - (B - C)^2 \] ### Step 4: Expand and Rearrange Now, we can expand \( (B - C)^2 \): \[ (B - C)^2 = B^2 - 2BC + C^2 \] Thus, we have: \[ 3BC = A^2 - (B^2 - 2BC + C^2) \] This simplifies to: \[ 3BC = A^2 - B^2 + 2BC - C^2 \] ### Step 5: Rearranging Further Rearranging gives: \[ A^2 - B^2 - C^2 = BC \] ### Step 6: Use the Cosine Rule Using the cosine rule: \[ A^2 = B^2 + C^2 - 2BC \cos A \] Substituting this into our equation: \[ B^2 + C^2 - 2BC \cos A - B^2 - C^2 = BC \] This simplifies to: \[ -2BC \cos A = BC \] ### Step 7: Divide by BC Assuming \( BC \neq 0 \), we can divide both sides by \( BC \): \[ -2 \cos A = 1 \] Thus: \[ \cos A = -\frac{1}{2} \] ### Step 8: Determine the Angle A The angle \( A \) for which \( \cos A = -\frac{1}{2} \) is: \[ A = 120^\circ \] ### Conclusion Thus, we have shown that if \( 3BC = (A - B + C)(A + B - C) \), then \( A = 120^\circ \). ### Verification of Statements - **Statement 1**: True, since we derived \( A = 120^\circ \). - **Statement 2**: True, as \( \cos 120^\circ = -\frac{1}{2} \). Both statements are correct.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Statement-1 : If angles A, B, C of DeltaABC are acute, then cotA cotB cotCle(1)/(3sqrt(3)). Statement-2: If a, b, c are positive real numbers and -ltmlt1 , then (a^(m)+b^(m)+c^(m))/(3)lt((a+b+c)/(3))^(m)

Statement 1. In any triangle ABC,if a:b:c=4:5:6, then R:r=16:7 , Statement 2. In any triangle R/r= (abc)/(4s) (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Stastement 2 is true

If cos 120^(@)=(-1)/(2) find the values of sin 120^(@) and tan 120^(@) .

Statement:1 In triangleABC , if a lt b sinA , then the triangle is possible. And Statement:2 In triangleABC a/(sinA)= b/(sinB)

Statement-1: In a !ABC , if 2a^(2)+4b^(2)+c^(2)=4ab+2ac , then cosA=1/4 Statement-2: In a DeltaA BC if cosA=1/4 , then (a+b+c)(b+c-a)=5/2bc

In triangleABC , If (1)/(b+c)+(1)/(c+a)=(3)/(a+b+c) , then cosC=

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

Statement 1. If sin^-1 x=cos^-1 x, then x= 1/sqrt(2) , Statement 2. sin^-1 x+cos^-1 x= pi/2, 1lexlarr1 (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true

Statement-1: If ad-bc ne 0 , then f(x)=(ax+b)/(cx+d) cannot attain the value {(a)/(c )} . Statement-2: The domain of the function g(x)=(b-dx)/(cx-a) is R-{(a)/( c)}

Statement-1: In a !ABC , (a+b+c)(tanA/2+tanB/2)=2c cotC/2 Statement-2: In a !ABC , a = b cos C + c cos B

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section E (Assertion-Reason Types Questions)
  1. Statement-1: sinx = siny rArr x =y. and Statement-2: sinx = siny hav...

    Text Solution

    |

  2. Statement-1: f(x ) = log( cosx)sinx is well defined in (0,pi/2). and ...

    Text Solution

    |

  3. Statement:1 : Minimum value of sinx + " cosec "x is 2 for all x in (0,...

    Text Solution

    |

  4. Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D), then the values...

    Text Solution

    |

  5. Statement:1 if cos theta=1/7 and cos phi = 13/14 where theta and phi b...

    Text Solution

    |

  6. Statement:1: The value of k for which (costheta- sintheta)^(2) + k sin...

    Text Solution

    |

  7. Statement:1 If theta is acute and 1+ costheta = k, then sin (theta/2) ...

    Text Solution

    |

  8. Statement-1: In an acute angled triangle minimum value of tan alpha + ...

    Text Solution

    |

  9. Statement-1: The equation 3 cosx + 4sinx =6 has no solution. and Sta...

    Text Solution

    |

  10. Statement-1: The general solution of 2^(sinx) + 2^( cosx)= 2^(1-1/sqrt...

    Text Solution

    |

  11. Statement:1: If sum (r=1)^(n) sin(x(r)) = n, then sum(n=1)^(n) cot (x(...

    Text Solution

    |

  12. Statement:1 The number of real solution of the equation sinx = 4^(x) +...

    Text Solution

    |

  13. Statement-1: The general solution of tan 5theta = cot 2theta is theta ...

    Text Solution

    |

  14. Statement-1: If triangleABC, 3bc=(a-b+c)(a+b-c) then A=120^(@). and ...

    Text Solution

    |

  15. ABCD is a quadrilateral in which a circle is inscribed. Statement:1 ...

    Text Solution

    |

  16. Statement:1 In triangleABC, if a lt b sinA, then the triangle is possi...

    Text Solution

    |

  17. Let ABCD be a cyclic quadrilateral then Statement:1 sinA + sinB+ sin...

    Text Solution

    |

  18. Statement I In a triangle ABC if tan A: tan B: tan C=1 :2:3, then A=...

    Text Solution

    |