Home
Class 12
MATHS
x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, ...

`x^(2)-2x+2cos^(2)theta +sin^(2)theta=0`, then maximum number of ordered pair `(x, theta)` such that `x ∈ R, theta ∈ [0,2pi]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 2x + 2\cos^2\theta + \sin^2\theta = 0 \) and find the maximum number of ordered pairs \( (x, \theta) \) such that \( x \in \mathbb{R} \) and \( \theta \in [0, 2\pi] \), we can follow these steps: ### Step 1: Rewrite the equation The given equation can be rewritten as: \[ x^2 - 2x + 2\cos^2\theta + \sin^2\theta = 0 \] We know that \( \sin^2\theta + \cos^2\theta = 1 \), so we can substitute \( \sin^2\theta = 1 - \cos^2\theta \): \[ x^2 - 2x + 2\cos^2\theta + (1 - \cos^2\theta) = 0 \] This simplifies to: \[ x^2 - 2x + (1 + \cos^2\theta) = 0 \] ### Step 2: Analyze the quadratic equation The equation \( x^2 - 2x + (1 + \cos^2\theta) = 0 \) is a quadratic in \( x \). For this quadratic to have real solutions, the discriminant must be non-negative: \[ D = b^2 - 4ac = (-2)^2 - 4(1)(1 + \cos^2\theta) \geq 0 \] Calculating the discriminant: \[ D = 4 - 4(1 + \cos^2\theta) = 4 - 4 - 4\cos^2\theta = -4\cos^2\theta \] For \( D \geq 0 \), we need: \[ -4\cos^2\theta \geq 0 \] This implies: \[ \cos^2\theta = 0 \] ### Step 3: Solve for \( \theta \) The condition \( \cos^2\theta = 0 \) means: \[ \cos\theta = 0 \] The values of \( \theta \) that satisfy this in the interval \( [0, 2\pi] \) are: \[ \theta = \frac{\pi}{2}, \frac{3\pi}{2} \] ### Step 4: Find corresponding \( x \) values Substituting \( \cos^2\theta = 0 \) back into the quadratic equation: \[ x^2 - 2x + 1 = 0 \] This simplifies to: \[ (x - 1)^2 = 0 \] Thus, the only solution for \( x \) is: \[ x = 1 \] ### Step 5: Determine the ordered pairs The ordered pairs \( (x, \theta) \) that satisfy the conditions are: 1. \( (1, \frac{\pi}{2}) \) 2. \( (1, \frac{3\pi}{2}) \) ### Conclusion The maximum number of ordered pairs \( (x, \theta) \) such that \( x \in \mathbb{R} \) and \( \theta \in [0, 2\pi] \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the expression sin theta cos^(2)theta(AA theta in [0, pi]) is

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If the system of linear equations {:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):} is consistent , then the number of possible values of theta, theta in [0,2pi] is :

If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2))/(cos^(2)theta)=1 is (2)/(sqrt3) , then the sum of all the possible values of theta is (where, theta in (0, pi) )

Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 theta * cos 7 theta in [0,(pi)/2]

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}| theta in (0,pi//2), then roots of f(x)=0 are

Consider the cubic equation in x , x ^(3) - x^(2) + (x- x ^(2)) sin theta + (x -x ^(2)) cos theta + (x-1) sin theta cos theta =0 whose roots are alpha, beta , gamma. Number of value of theta in [0,2pi] for which at least two roots are equal, is :

If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) find the value of theta.

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section -G (Integer Answer type questions)
  1. If 5 costheta = 3, then ( "cosec "theta+cot theta)/(" cosec " theta- c...

    Text Solution

    |

  2. The smallest value of 3(tan^(2)theta+cot^(2)theta) = 8(tantheta + cott...

    Text Solution

    |

  3. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  4. The smallest value of 3(tan^(2)theta+cot^(2)theta) - 8(tantheta + cott...

    Text Solution

    |

  5. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  6. The sum of maximum and minimum values of the expression 5 cosx + 3sin(...

    Text Solution

    |

  7. Let PQ and RS be two parallel chords of a given circle of radius 6 cm,...

    Text Solution

    |

  8. If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

    Text Solution

    |

  9. The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x ...

    Text Solution

    |

  10. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  11. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  12. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  13. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  14. In a triangleABC, bc=a, a=2, the value of 2DeltaR is equal to

    Text Solution

    |

  15. In a triangle ABC with usual notation b cosec B=a, then value of (b +...

    Text Solution

    |

  16. In a triangle ABC, 2B= A + C and b^(2) = ac, then (a(a+b+c))/(3bc) is

    Text Solution

    |

  17. In an equilateral triangle with usual notations the value of (27r^(2)R...

    Text Solution

    |

  18. In a triangle ABC, (c cos(A-theta) + acos (C + theta))/(b costheta) is...

    Text Solution

    |