Home
Class 12
MATHS
The sum of maximum and minimum values of...

The sum of maximum and minimum values of the expression `5 cosx + 3sin(pi/6 -x)+4` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the maximum and minimum values of the expression \(5 \cos x + 3 \sin\left(\frac{\pi}{6} - x\right) + 4\), we can follow these steps: ### Step 1: Simplify the Expression Let \(f(x) = 5 \cos x + 3 \sin\left(\frac{\pi}{6} - x\right) + 4\). Using the sine subtraction formula, we have: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Here, \(a = \frac{\pi}{6}\) and \(b = x\). Thus, \[ \sin\left(\frac{\pi}{6} - x\right) = \sin\left(\frac{\pi}{6}\right) \cos x - \cos\left(\frac{\pi}{6}\right) \sin x \] Substituting the values, we get: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] So, \[ \sin\left(\frac{\pi}{6} - x\right) = \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \] ### Step 2: Substitute Back into the Expression Now substituting back into \(f(x)\): \[ f(x) = 5 \cos x + 3\left(\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x\right) + 4 \] This simplifies to: \[ f(x) = 5 \cos x + \frac{3}{2} \cos x - \frac{3\sqrt{3}}{2} \sin x + 4 \] Combining like terms: \[ f(x) = \left(5 + \frac{3}{2}\right) \cos x - \frac{3\sqrt{3}}{2} \sin x + 4 \] \[ f(x) = \frac{13}{2} \cos x - \frac{3\sqrt{3}}{2} \sin x + 4 \] ### Step 3: Identify the Coefficients Let \(A = \frac{13}{2}\) and \(B = -\frac{3\sqrt{3}}{2}\). ### Step 4: Find Maximum and Minimum Values The expression \(A \cos x + B \sin x\) can be bounded by: \[ -\sqrt{A^2 + B^2} \leq A \cos x + B \sin x \leq \sqrt{A^2 + B^2} \] Calculating \(A^2 + B^2\): \[ A^2 = \left(\frac{13}{2}\right)^2 = \frac{169}{4}, \quad B^2 = \left(-\frac{3\sqrt{3}}{2}\right)^2 = \frac{27}{4} \] Thus, \[ A^2 + B^2 = \frac{169}{4} + \frac{27}{4} = \frac{196}{4} = 49 \] So, \[ \sqrt{A^2 + B^2} = \sqrt{49} = 7 \] ### Step 5: Determine the Range of \(f(x)\) Thus, \[ -7 \leq \frac{13}{2} \cos x - \frac{3\sqrt{3}}{2} \sin x \leq 7 \] Adding 4 to all parts of the inequality: \[ -7 + 4 \leq f(x) \leq 7 + 4 \] This gives: \[ -3 \leq f(x) \leq 11 \] ### Step 6: Find the Sum of Maximum and Minimum Values The maximum value of \(f(x)\) is \(11\) and the minimum value is \(-3\). Thus, the sum of the maximum and minimum values is: \[ 11 + (-3) = 8 \] ### Final Answer The sum of the maximum and minimum values of the expression is \(8\). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the expression: a cos theta + b sin theta

The sum of the maximum and minimum values of the function f(x)=1/(1+(2cosx-4sinx)^2)i s

Write the maximum and minimum values of 3cos x+4sin x+5.

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

Write the maximum and minimum values of cos(cosx)

The maximum and minimum values of expression (4-2costheta) respectively are

The maximum and minimum values of 6 sin x cos x +4cos2x are respectively

Find the maximum and minimum values of the following expressions. (i) 3costheta+5sin(theta-pi/6) (ii) 4sintheta-3costheta+7

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section -G (Integer Answer type questions)
  1. If 5 costheta = 3, then ( "cosec "theta+cot theta)/(" cosec " theta- c...

    Text Solution

    |

  2. The smallest value of 3(tan^(2)theta+cot^(2)theta) = 8(tantheta + cott...

    Text Solution

    |

  3. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  4. The smallest value of 3(tan^(2)theta+cot^(2)theta) - 8(tantheta + cott...

    Text Solution

    |

  5. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  6. The sum of maximum and minimum values of the expression 5 cosx + 3sin(...

    Text Solution

    |

  7. Let PQ and RS be two parallel chords of a given circle of radius 6 cm,...

    Text Solution

    |

  8. If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

    Text Solution

    |

  9. The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x ...

    Text Solution

    |

  10. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  11. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  12. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  13. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  14. In a triangleABC, bc=a, a=2, the value of 2DeltaR is equal to

    Text Solution

    |

  15. In a triangle ABC with usual notation b cosec B=a, then value of (b +...

    Text Solution

    |

  16. In a triangle ABC, 2B= A + C and b^(2) = ac, then (a(a+b+c))/(3bc) is

    Text Solution

    |

  17. In an equilateral triangle with usual notations the value of (27r^(2)R...

    Text Solution

    |

  18. In a triangle ABC, (c cos(A-theta) + acos (C + theta))/(b costheta) is...

    Text Solution

    |