Home
Class 12
MATHS
In right angled triangle ABC, if AB=AC, ...

In right angled `triangle ABC`, if AB=AC, then value of `|R/r|` (value [X] denote the greatest integer of x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|R/r|\) for a right-angled triangle \(ABC\) where \(AB = AC\). Here’s a step-by-step solution: ### Step 1: Understand the Triangle Given that triangle \(ABC\) is a right-angled triangle with \(AB = AC\), we can denote the lengths of the sides as follows: - Let \(AB = AC = a\) - Let \(BC = b\) ### Step 2: Use Pythagorean Theorem Since \(A\) is the right angle, we can apply the Pythagorean theorem: \[ b^2 = a^2 + a^2 = 2a^2 \implies b = a\sqrt{2} \] ### Step 3: Identify the Sides Now we have the sides of the triangle: - \(AB = AC = a\) - \(BC = b = a\sqrt{2}\) ### Step 4: Calculate the Area (\(Δ\)) The area \(Δ\) of triangle \(ABC\) can be calculated using the formula for the area of a triangle: \[ Δ = \frac{1}{2} \times base \times height = \frac{1}{2} \times a \times a = \frac{a^2}{2} \] ### Step 5: Calculate the Semi-perimeter (\(S\)) The semi-perimeter \(S\) is given by: \[ S = \frac{AB + AC + BC}{2} = \frac{a + a + a\sqrt{2}}{2} = \frac{2a + a\sqrt{2}}{2} = a\left(1 + \frac{\sqrt{2}}{2}\right) \] ### Step 6: Calculate the Circumradius (\(R\)) The circumradius \(R\) of a triangle can be calculated using the formula: \[ R = \frac{abc}{4Δ} \] Here, \(a = a\), \(b = a\), and \(c = a\sqrt{2}\): \[ R = \frac{a \cdot a \cdot a\sqrt{2}}{4 \cdot \frac{a^2}{2}} = \frac{a^3\sqrt{2}}{2a^2} = \frac{a\sqrt{2}}{2} \] ### Step 7: Calculate the Inradius (\(r\)) The inradius \(r\) is given by: \[ r = \frac{Δ}{S} = \frac{\frac{a^2}{2}}{a\left(1 + \frac{\sqrt{2}}{2}\right)} = \frac{a}{2\left(1 + \frac{\sqrt{2}}{2}\right)} \] ### Step 8: Calculate \(|R/r|\) Now we need to find \(|R/r|\): \[ \frac{R}{r} = \frac{\frac{a\sqrt{2}}{2}}{\frac{a}{2\left(1 + \frac{\sqrt{2}}{2}\right)}} = \sqrt{2} \cdot \left(1 + \frac{\sqrt{2}}{2}\right) \] Simplifying: \[ \frac{R}{r} = \sqrt{2} + 1 \] ### Step 9: Calculate the Greatest Integer Function Now, we need to find the greatest integer value of \(\sqrt{2} + 1\): \[ \sqrt{2} \approx 1.414 \implies \sqrt{2} + 1 \approx 2.414 \] Thus, the greatest integer less than or equal to \(2.414\) is \(2\). ### Final Answer The value of \(|R/r|\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In right triangle, ABC, AB=10,BC=8,AC=6.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

In a triangle ABC, If A=B=120^(@) and R=8r, then the value of cosC is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The inradius in a right angled triangle with integer sides is r If r = 4, the greatest perimeter (in units) is

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

If triangle ABC is right angled at C, then the value of sec (A+B) is

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section -G (Integer Answer type questions)
  1. If 5 costheta = 3, then ( "cosec "theta+cot theta)/(" cosec " theta- c...

    Text Solution

    |

  2. The smallest value of 3(tan^(2)theta+cot^(2)theta) = 8(tantheta + cott...

    Text Solution

    |

  3. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  4. The smallest value of 3(tan^(2)theta+cot^(2)theta) - 8(tantheta + cott...

    Text Solution

    |

  5. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  6. The sum of maximum and minimum values of the expression 5 cosx + 3sin(...

    Text Solution

    |

  7. Let PQ and RS be two parallel chords of a given circle of radius 6 cm,...

    Text Solution

    |

  8. If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

    Text Solution

    |

  9. The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x ...

    Text Solution

    |

  10. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  11. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  12. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  13. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  14. In a triangleABC, bc=a, a=2, the value of 2DeltaR is equal to

    Text Solution

    |

  15. In a triangle ABC with usual notation b cosec B=a, then value of (b +...

    Text Solution

    |

  16. In a triangle ABC, 2B= A + C and b^(2) = ac, then (a(a+b+c))/(3bc) is

    Text Solution

    |

  17. In an equilateral triangle with usual notations the value of (27r^(2)R...

    Text Solution

    |

  18. In a triangle ABC, (c cos(A-theta) + acos (C + theta))/(b costheta) is...

    Text Solution

    |