Home
Class 12
MATHS
In a triangle ABC, 2B= A + C and b^(2) =...

In a triangle ABC, 2B= A + C and `b^(2) = ac`, then `(a(a+b+c))/(3bc)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given conditions in triangle ABC. ### Step 1: Understand the given conditions We have two conditions: 1. \( 2B = A + C \) 2. \( b^2 = ac \) From the first condition, we can express \( A + C \) in terms of \( B \): \[ A + C = 2B \] ### Step 2: Use the angle sum property of triangles The sum of angles in a triangle is 180 degrees: \[ A + B + C = 180^\circ \] Substituting \( A + C = 2B \) into this equation gives: \[ 2B + B = 180^\circ \implies 3B = 180^\circ \implies B = 60^\circ \] ### Step 3: Find angles A and C Since \( B = 60^\circ \), we can substitute back to find \( A \) and \( C \): \[ A + C = 2B = 120^\circ \] Thus, we can express \( C \) as: \[ C = 120^\circ - A \] ### Step 4: Use the second condition \( b^2 = ac \) Using the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Let \( k \) be the common ratio: \[ a = k \sin A, \quad b = k \sin B, \quad c = k \sin C \] Substituting \( B = 60^\circ \): \[ b = k \sin 60^\circ = k \frac{\sqrt{3}}{2} \] Now substituting into the second condition: \[ b^2 = ac \implies \left(k \frac{\sqrt{3}}{2}\right)^2 = (k \sin A)(k \sin C) \] This simplifies to: \[ \frac{3k^2}{4} = k^2 \sin A \sin C \] Dividing both sides by \( k^2 \) (assuming \( k \neq 0 \)): \[ \frac{3}{4} = \sin A \sin C \] ### Step 5: Substitute \( C = 120^\circ - A \) Using the identity \( \sin(120^\circ - A) = \sin 120^\circ \cos A - \cos 120^\circ \sin A \): \[ \sin C = \sin(120^\circ - A) = \frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A \] Thus, we have: \[ \sin A \left( \frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A \right) = \frac{3}{4} \] ### Step 6: Solve for \( A \) and \( C \) Using the sine values and solving the equation leads to the conclusion that \( A = C = 60^\circ \). Therefore, triangle ABC is equilateral: \[ A = B = C = 60^\circ \] ### Step 7: Calculate the expression \( \frac{a(a+b+c)}{3bc} \) In an equilateral triangle, \( a = b = c \). Let \( a = b = c = k \): \[ \frac{a(a+b+c)}{3bc} = \frac{k(k+k+k)}{3kk} = \frac{k(3k)}{3k^2} = \frac{3k^2}{3k^2} = 1 \] ### Final Answer Thus, the value of \( \frac{a(a+b+c)}{3bc} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find : tan^2B - sec^2 B+2

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 21 , then inradius =

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

In a triangle ABC,a/b=2+sqrt(3) and /_C=60^(@) then angle A and B is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section -G (Integer Answer type questions)
  1. If 5 costheta = 3, then ( "cosec "theta+cot theta)/(" cosec " theta- c...

    Text Solution

    |

  2. The smallest value of 3(tan^(2)theta+cot^(2)theta) = 8(tantheta + cott...

    Text Solution

    |

  3. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  4. The smallest value of 3(tan^(2)theta+cot^(2)theta) - 8(tantheta + cott...

    Text Solution

    |

  5. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  6. The sum of maximum and minimum values of the expression 5 cosx + 3sin(...

    Text Solution

    |

  7. Let PQ and RS be two parallel chords of a given circle of radius 6 cm,...

    Text Solution

    |

  8. If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

    Text Solution

    |

  9. The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x ...

    Text Solution

    |

  10. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  11. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  12. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  13. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  14. In a triangleABC, bc=a, a=2, the value of 2DeltaR is equal to

    Text Solution

    |

  15. In a triangle ABC with usual notation b cosec B=a, then value of (b +...

    Text Solution

    |

  16. In a triangle ABC, 2B= A + C and b^(2) = ac, then (a(a+b+c))/(3bc) is

    Text Solution

    |

  17. In an equilateral triangle with usual notations the value of (27r^(2)R...

    Text Solution

    |

  18. In a triangle ABC, (c cos(A-theta) + acos (C + theta))/(b costheta) is...

    Text Solution

    |