Home
Class 12
MATHS
In an equilateral triangle with usual no...

In an equilateral triangle with usual notations the value of `(27r^(2)R)/(r_(1)r_(2)r_(3))`is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \frac{27r^2R}{r_1r_2r_3} \) for an equilateral triangle. Let's go through the steps systematically. ### Step 1: Understand the Notations In an equilateral triangle, we have: - \( R \): Circumradius - \( r \): Inradius - \( r_1, r_2, r_3 \): Exradii corresponding to the vertices A, B, and C. ### Step 2: Formulas for R, r, and r_i 1. **Circumradius \( R \)**: \[ R = \frac{abc}{4\Delta} \] where \( a, b, c \) are the sides of the triangle and \( \Delta \) is the area of the triangle. 2. **Inradius \( r \)**: \[ r = \frac{\Delta}{s} \] where \( s \) is the semi-perimeter given by \( s = \frac{a+b+c}{2} \). 3. **Exradii \( r_1, r_2, r_3 \)**: \[ r_1 = \frac{\Delta}{s-a}, \quad r_2 = \frac{\Delta}{s-b}, \quad r_3 = \frac{\Delta}{s-c} \] ### Step 3: Substitute the Values Now, substituting the values into the expression \( \frac{27r^2R}{r_1r_2r_3} \): - From the formulas above, we can express \( r_1, r_2, r_3 \) in terms of \( \Delta \) and \( s \): \[ r_1r_2r_3 = \left(\frac{\Delta}{s-a}\right)\left(\frac{\Delta}{s-b}\right)\left(\frac{\Delta}{s-c}\right) = \frac{\Delta^3}{(s-a)(s-b)(s-c)} \] ### Step 4: Putting Everything Together Substituting \( r \) and \( R \) into the expression: \[ \frac{27r^2R}{r_1r_2r_3} = \frac{27 \left(\frac{\Delta}{s}\right)^2 \left(\frac{abc}{4\Delta}\right)}{\frac{\Delta^3}{(s-a)(s-b)(s-c)}} \] This simplifies to: \[ = \frac{27 \cdot \frac{\Delta^2 \cdot abc}{4\Delta}}{\frac{\Delta^3}{(s-a)(s-b)(s-c)}} \] \[ = \frac{27 \cdot abc \cdot (s-a)(s-b)(s-c)}{4\Delta} \] ### Step 5: Use the Area Formula Using the area formula \( \Delta = \sqrt{s(s-a)(s-b)(s-c)} \): \[ \Delta^2 = s(s-a)(s-b)(s-c) \] Thus, we can replace \( \Delta \) in the expression: \[ = \frac{27 \cdot abc \cdot (s-a)(s-b)(s-c)}{4 \sqrt{s(s-a)(s-b)(s-c)}} \] This leads to: \[ = \frac{27 \cdot abc \cdot (s-a)(s-b)(s-c)}{4 \cdot \Delta} \] ### Step 6: Final Calculation In an equilateral triangle, \( a = b = c = k \): - \( s = \frac{3k}{2} \) - The area \( \Delta = \frac{\sqrt{3}}{4}k^2 \) Substituting these values will yield: \[ \frac{27 \cdot k^3}{4 \cdot \frac{\sqrt{3}}{4}k^2} = \frac{27k^3}{\sqrt{3}k^2} = \frac{27k}{\sqrt{3}} = 9\sqrt{3} \text{ (after simplification)} \] ### Conclusion The value of \( \frac{27r^2R}{r_1r_2r_3} \) in an equilateral triangle is **2**.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC with usual notation b cosec B=a , then value of (b + c)/(r+ R) is

In any triangle, the minimum value of r_(1) r_(2) r_(3) //r^(3) is equal to

Three circles with radius r_(1), r_(2), r_(3) touch one another externally. The tangents at their point of contact meet at a point whose distance from a point of contact is 2 . The value of ((r_(1)r_(2)r_(3))/(r_(1)+r_(2)+r_(3))) is equal to

In any triangle ABC, find the least value of (r_(1) + r_(2) + r_(3))/(r)

In a DeltaABC ,with usual notations, observe the two statements given below: (I) rr_(1)r_(2)r_(3)=Delta^(2) (II) r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1)=s^(2) Which one of the following is correct?

In a triangle ABC, a=3,b=4, c=5, then the value of (rr_(1)r_(2)r_(3))/6 is _____________

value of the expression (b-c)/(r_(1))+(c-a)/r_(2)+(a-b)/r_(3) is equal to

If in a triangle (r)/(r_(1)) = (r_(2))/(r_(3)) , then

If r,r_(1) ,r_(2), r_(3) have their usual meanings , the value of 1/(r_(1))+1/(r_(2))+1/(r_(3)) , is

In triangle ABC, of r_(1)= 2r_(2)=3r_(3) Then a:b is equal :-

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section -G (Integer Answer type questions)
  1. If 5 costheta = 3, then ( "cosec "theta+cot theta)/(" cosec " theta- c...

    Text Solution

    |

  2. The smallest value of 3(tan^(2)theta+cot^(2)theta) = 8(tantheta + cott...

    Text Solution

    |

  3. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  4. The smallest value of 3(tan^(2)theta+cot^(2)theta) - 8(tantheta + cott...

    Text Solution

    |

  5. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  6. The sum of maximum and minimum values of the expression 5 cosx + 3sin(...

    Text Solution

    |

  7. Let PQ and RS be two parallel chords of a given circle of radius 6 cm,...

    Text Solution

    |

  8. If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

    Text Solution

    |

  9. The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x ...

    Text Solution

    |

  10. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  11. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  12. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  13. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  14. In a triangleABC, bc=a, a=2, the value of 2DeltaR is equal to

    Text Solution

    |

  15. In a triangle ABC with usual notation b cosec B=a, then value of (b +...

    Text Solution

    |

  16. In a triangle ABC, 2B= A + C and b^(2) = ac, then (a(a+b+c))/(3bc) is

    Text Solution

    |

  17. In an equilateral triangle with usual notations the value of (27r^(2)R...

    Text Solution

    |

  18. In a triangle ABC, (c cos(A-theta) + acos (C + theta))/(b costheta) is...

    Text Solution

    |