Home
Class 12
MATHS
In a triangle ABC, (c cos(A-theta) + aco...

In a triangle ABC, `(c cos(A-theta) + acos (C + theta))/(b costheta)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \((c \cos(A - \theta) + a \cos(C + \theta)) / (b \cos \theta)\). ### Step-by-Step Solution: 1. **Start with the given expression:** \[ \frac{c \cos(A - \theta) + a \cos(C + \theta)}{b \cos \theta} \] 2. **Use the cosine addition and subtraction formulas:** - Recall that: \[ \cos(A - \theta) = \cos A \cos \theta + \sin A \sin \theta \] \[ \cos(C + \theta) = \cos C \cos \theta - \sin C \sin \theta \] 3. **Substituting these formulas into the expression:** \[ c \cos(A - \theta) = c (\cos A \cos \theta + \sin A \sin \theta) = c \cos A \cos \theta + c \sin A \sin \theta \] \[ a \cos(C + \theta) = a (\cos C \cos \theta - \sin C \sin \theta) = a \cos C \cos \theta - a \sin C \sin \theta \] 4. **Combine these results:** \[ c \cos(A - \theta) + a \cos(C + \theta) = (c \cos A + a \cos C) \cos \theta + (c \sin A - a \sin C) \sin \theta \] 5. **Now substitute back into the original expression:** \[ \frac{(c \cos A + a \cos C) \cos \theta + (c \sin A - a \sin C) \sin \theta}{b \cos \theta} \] 6. **Separate the terms:** \[ = \frac{(c \cos A + a \cos C)}{b} + \frac{(c \sin A - a \sin C) \sin \theta}{b \cos \theta} \] 7. **Now apply the sine rule:** - According to the sine rule, we have: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \] - This gives us: \[ a = k \sin A, \quad b = k \sin B, \quad c = k \sin C \] 8. **Substituting these values into the expression:** \[ = \frac{(k \sin C \cos A + k \sin A \cos C)}{k \sin B} + \frac{(k \sin C \sin A - k \sin A \sin C) \sin \theta}{k \sin B \cos \theta} \] 9. **Simplifying further:** - The first term simplifies to: \[ \frac{\sin C \cos A + \sin A \cos C}{\sin B} = \frac{\sin(A + C)}{\sin B} \] - Since \(A + C = \pi - B\), we have: \[ \sin(A + C) = \sin B \] 10. **Final result:** \[ = \frac{\sin B}{\sin B} = 1 \] ### Conclusion: Thus, the expression simplifies to: \[ \frac{c \cos(A - \theta) + a \cos(C + \theta)}{b \cos \theta} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, cos A+cos B+cos C=

In triangle ABC, if cos A + cos B + cos C = (7)/(4), " then " (R)/(r) is equal to

In a triangle ABC, prove that for any angle theta, b cos (A - theta) + a cos (B + theta) = C cos theta .

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

lf cos 5theta-acos^5 theta + b cos^3 theta + c cos theta then c is equal to-

If the median AD of a triangle ABC makes an angle theta with side, AB, then sin(A-theta) is equal to

In a triangle ABC cos A = 7/8 , cos B = 11/16 .then , cos C is equal to

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section -G (Integer Answer type questions)
  1. If 5 costheta = 3, then ( "cosec "theta+cot theta)/(" cosec " theta- c...

    Text Solution

    |

  2. The smallest value of 3(tan^(2)theta+cot^(2)theta) = 8(tantheta + cott...

    Text Solution

    |

  3. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  4. The smallest value of 3(tan^(2)theta+cot^(2)theta) - 8(tantheta + cott...

    Text Solution

    |

  5. x^(2)-2x+2cos^(2)theta +sin^(2)theta=0, then maximum number of ordered...

    Text Solution

    |

  6. The sum of maximum and minimum values of the expression 5 cosx + 3sin(...

    Text Solution

    |

  7. Let PQ and RS be two parallel chords of a given circle of radius 6 cm,...

    Text Solution

    |

  8. If 3 tan theta tan phi=1, then (cos (theta-phi))/(cos (theta+phi)) is

    Text Solution

    |

  9. The number of solutions of (81)^(sin ^2 x) + (81)^( cos^2x )=30 for x ...

    Text Solution

    |

  10. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at lea...

    Text Solution

    |

  11. If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,np...

    Text Solution

    |

  12. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  13. In right angled triangle ABC, if AB=AC, then value of |R/r| (value [X]...

    Text Solution

    |

  14. In a triangleABC, bc=a, a=2, the value of 2DeltaR is equal to

    Text Solution

    |

  15. In a triangle ABC with usual notation b cosec B=a, then value of (b +...

    Text Solution

    |

  16. In a triangle ABC, 2B= A + C and b^(2) = ac, then (a(a+b+c))/(3bc) is

    Text Solution

    |

  17. In an equilateral triangle with usual notations the value of (27r^(2)R...

    Text Solution

    |

  18. In a triangle ABC, (c cos(A-theta) + acos (C + theta))/(b costheta) is...

    Text Solution

    |