Home
Class 12
MATHS
Statement-1: sin^(2)6^(@) + sin^(2)12^(@...

Statement-1: `sin^(2)6^(@) + sin^(2)12^(@) + sin^(2)18^(@) +……..+ sin^(2)84^(@)=7`
Statement-2: `tan9^(@) tan27^(@) tan45^(@) tan36^(@) tan81^(@)=1`
Statement-3: `(tan(pi/4) + cot(pi/4) + " cosec " pi/4) (tan(pi/4) + cot(pi/4) - " cosec "pi/4) = sec ^(2)pi/3`

A

TTT

B

FFT

C

TTF

D

TFF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements step by step, we will analyze each statement one by one. ### Statement 1: **Claim:** \( \sin^2(6^\circ) + \sin^2(12^\circ) + \sin^2(18^\circ) + \ldots + \sin^2(84^\circ) = 7 \) **Step 1:** Identify the terms in the series. - The series consists of sine squares from \( 6^\circ \) to \( 84^\circ \) with a common difference of \( 6^\circ \). - The terms are \( \sin^2(6^\circ), \sin^2(12^\circ), \sin^2(18^\circ), \ldots, \sin^2(84^\circ) \). **Step 2:** Count the number of terms. - The angles form an arithmetic sequence where \( a = 6^\circ \), \( d = 6^\circ \), and the last term \( l = 84^\circ \). - The number of terms \( n \) can be calculated using the formula for the \( n \)-th term of an arithmetic sequence: \[ n = \frac{l - a}{d} + 1 = \frac{84 - 6}{6} + 1 = 14 \] **Step 3:** Pair the sine squares. - Pair the terms: \( \sin^2(6^\circ) + \sin^2(84^\circ) \), \( \sin^2(12^\circ) + \sin^2(78^\circ) \), etc. - Using the identity \( \sin^2(x) + \sin^2(90^\circ - x) = 1 \): \[ \sin^2(6^\circ) + \sin^2(84^\circ) = 1 \] \[ \sin^2(12^\circ) + \sin^2(78^\circ) = 1 \] \[ \sin^2(18^\circ) + \sin^2(72^\circ) = 1 \] \[ \sin^2(24^\circ) + \sin^2(66^\circ) = 1 \] \[ \sin^2(30^\circ) + \sin^2(60^\circ) = 1 \] \[ \sin^2(36^\circ) + \sin^2(54^\circ) = 1 \] \[ \sin^2(42^\circ) + \sin^2(48^\circ) = 1 \] \[ \sin^2(48^\circ) + \sin^2(42^\circ) = 1 \] \[ \sin^2(54^\circ) + \sin^2(36^\circ) = 1 \] \[ \sin^2(60^\circ) + \sin^2(30^\circ) = 1 \] \[ \sin^2(66^\circ) + \sin^2(24^\circ) = 1 \] \[ \sin^2(72^\circ) + \sin^2(18^\circ) = 1 \] \[ \sin^2(78^\circ) + \sin^2(12^\circ) = 1 \] \[ \sin^2(84^\circ) + \sin^2(6^\circ) = 1 \] - There are 7 pairs, thus: \[ \text{Total} = 7 \times 1 = 7 \] **Conclusion for Statement 1:** True. ### Statement 2: **Claim:** \( \tan(9^\circ) \tan(27^\circ) \tan(45^\circ) \tan(36^\circ) \tan(81^\circ) = 1 \) **Step 1:** Simplify the terms. - Note that \( \tan(45^\circ) = 1 \). - Rewrite the product: \[ \tan(9^\circ) \tan(27^\circ) \tan(36^\circ) \tan(81^\circ) \] **Step 2:** Use the identity \( \tan(90^\circ - x) = \cot(x) \). - Thus, \( \tan(81^\circ) = \cot(9^\circ) \) and \( \tan(36^\circ) = \cot(54^\circ) \). - Therefore: \[ \tan(9^\circ) \tan(81^\circ) = 1 \] \[ \tan(27^\circ) \tan(63^\circ) = 1 \] **Step 3:** Check if the product equals 1. - The product simplifies to: \[ 1 \cdot \tan(27^\circ) \cdot \tan(36^\circ) \cdot 1 \] - Since \( \tan(27^\circ) \tan(63^\circ) = 1 \) and \( \tan(36^\circ) \tan(54^\circ) = 1 \), the entire product does not equal 1. **Conclusion for Statement 2:** False. ### Statement 3: **Claim:** \( ( \tan(\frac{\pi}{4}) + \cot(\frac{\pi}{4}) + \csc(\frac{\pi}{4}) ) ( \tan(\frac{\pi}{4}) + \cot(\frac{\pi}{4}) - \csc(\frac{\pi}{4}) ) = \sec^2(\frac{\pi}{3}) \) **Step 1:** Calculate the left-hand side. - \( \tan(\frac{\pi}{4}) = 1 \), \( \cot(\frac{\pi}{4}) = 1 \), \( \csc(\frac{\pi}{4}) = \sqrt{2} \). - Substitute these values: \[ (1 + 1 + \sqrt{2})(1 + 1 - \sqrt{2}) = (2 + \sqrt{2})(2 - \sqrt{2}) \] **Step 2:** Expand the product. - Using the difference of squares: \[ (2 + \sqrt{2})(2 - \sqrt{2}) = 4 - 2 = 2 \] **Step 3:** Calculate the right-hand side. - \( \sec^2(\frac{\pi}{3}) = 1 + \tan^2(\frac{\pi}{3}) = 1 + 3 = 4 \). **Conclusion for Statement 3:** False. ### Final Conclusions: - Statement 1: True - Statement 2: False - Statement 3: False
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that: tan(pi/4+A)+tan(pi/4-A) = 2sec2A

Prove that: (tan(pi/4+A)+tan(pi/4-A))/(tan(pi/4+A)-tan(pi/4-A))="cosec"2A

(sec2x-tan2x) equals a) tan(x-pi/4) b) tan(pi/4-x) c) cot(x-pi/4) d) tan^2(x+pi/4)

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

Prove that tan(pi/16)+2tan(pi/8)+4=cot(pi/6) .

Solve : tan ((pi)/(4)+ theta) + tan ((pi)/(4) - theta) = 4

(cos(pi/12)-sin(pi/12))(tan(pi/12)+cot(pi/12))=

Prove that tan(pi/16)+2tan(pi/8)+4=cot (pi/16) .

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :