Home
Class 12
MATHS
Statement-1: f(theta) = sin^(2)theta+ co...

Statement-1: `f(theta) = sin^(2)theta+ cos^(2)theta`
then `f(theta)=1` for every real values of `theta`.
Statement:2: `g(theta) = sec^(2)theta - tan^(2)theta`.
then `g(theta) =1` for every real value of `theta`.
Statement-3: `f(theta) = g(theta)` for every real value of `theta`.

A

TFF

B

TTT

C

TFT

D

TTF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we will analyze each statement step by step. ### Step 1: Analyze Statement 1 The first statement is: \[ f(\theta) = \sin^2 \theta + \cos^2 \theta \] Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus, we conclude that: \[ f(\theta) = 1 \text{ for every real value of } \theta. \] ### Step 2: Analyze Statement 2 The second statement is: \[ g(\theta) = \sec^2 \theta - \tan^2 \theta \] Using the identity: \[ \sec^2 \theta = 1 + \tan^2 \theta \] We can rewrite \( g(\theta) \): \[ g(\theta) = (1 + \tan^2 \theta) - \tan^2 \theta = 1 \] Thus, we conclude that: \[ g(\theta) = 1 \text{ for every real value of } \theta. \] ### Step 3: Analyze Statement 3 The third statement is: \[ f(\theta) = g(\theta) \] From our analysis of Statements 1 and 2, we found: \[ f(\theta) = 1 \] \[ g(\theta) = 1 \] Therefore, we can conclude: \[ f(\theta) = g(\theta) \text{ for every real value of } \theta. \] ### Conclusion All three statements are true: 1. \( f(\theta) = 1 \) for every real value of \( \theta \). 2. \( g(\theta) = 1 \) for every real value of \( \theta \). 3. \( f(\theta) = g(\theta) \) for every real value of \( \theta \). ### Final Answer All three statements are true. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Can 6 sin^2 theta - 7 sin theta + 2 = 0 for any real value of theta ?

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

If x=cos^2theta+sin^4theta then for all real values of theta

Prove that (sin^(2)theta+cos^(2)theta)/(sec^(2)theta-tan^(2)theta)=1

Minimum value of cos2theta+costheta for all real value of theta is

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

Let f(theta) = 1/2 + 2/3 cosec^(2)theta + 3/8 sec^(2) theta . The least value of f(theta) for all permisible values of theta , is

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=

If cos2theta=sin4theta , where 2theta and 4theta are acute angles, find the value of theta .