Home
Class 12
MATHS
Statement:1 sinx =1/p rArr tanx =1/sqrt(...

Statement:1 `sinx =1/p rArr tanx =1/sqrt(p^(2)-1), p ne 1`.
Statement-2: `cosx = x^(3)+ 3/x, x gt 0` has no solution in R.
Statement-3: `tan^(2)x - sin^(2)x = tan^(2)x. sin^(2)x, x in R`

A

FFF

B

FTF

C

TTT

D

TTF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements step by step, let's analyze each statement one by one. ### Statement 1: **Given:** \( \sin x = \frac{1}{p} \) implies \( \tan x = \frac{1}{\sqrt{p^2 - 1}} \), where \( p \neq 1 \). **Step 1:** Start with the given equation \( \sin x = \frac{1}{p} \). **Step 2:** Recall the definition of sine in a right triangle: \[ \sin x = \frac{\text{Perpendicular}}{\text{Hypotenuse}}. \] Here, we can identify the perpendicular as 1 and the hypotenuse as \( p \). **Step 3:** Use the Pythagorean theorem to find the base: \[ \text{Base} = \sqrt{\text{Hypotenuse}^2 - \text{Perpendicular}^2} = \sqrt{p^2 - 1}. \] **Step 4:** Now, calculate \( \tan x \): \[ \tan x = \frac{\text{Perpendicular}}{\text{Base}} = \frac{1}{\sqrt{p^2 - 1}}. \] **Conclusion for Statement 1:** The statement is true. ### Statement 2: **Given:** \( \cos x = x^3 + \frac{3}{x} \) for \( x > 0 \) has no solution in \( \mathbb{R} \). **Step 1:** Recognize that \( \cos x \) ranges from -1 to 1. **Step 2:** Analyze the expression \( x^3 + \frac{3}{x} \): - Rewrite it as \( f(x) = x^3 + \frac{3}{x} \). **Step 3:** Apply the AM-GM inequality: \[ f(x) = x^3 + 1 + 1 + 1 \geq 4 \sqrt[4]{x^3 \cdot 1 \cdot 1 \cdot 1} = 4. \] **Step 4:** Since \( f(x) \geq 4 \) and \( \cos x \leq 1 \), it follows that there are no solutions where \( \cos x = f(x) \). **Conclusion for Statement 2:** The statement is true. ### Statement 3: **Given:** \( \tan^2 x - \sin^2 x = \tan^2 x \cdot \sin^2 x \). **Step 1:** Rewrite \( \tan^2 x \): \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x}. \] **Step 2:** Substitute into the equation: \[ \frac{\sin^2 x}{\cos^2 x} - \sin^2 x = \tan^2 x \cdot \sin^2 x. \] **Step 3:** Factor out \( \sin^2 x \): \[ \sin^2 x \left( \frac{1}{\cos^2 x} - 1 \right) = \tan^2 x \cdot \sin^2 x. \] **Step 4:** Simplify the left side: \[ \frac{\sin^2 x (1 - \cos^2 x)}{\cos^2 x} = \tan^2 x \cdot \sin^2 x. \] Since \( 1 - \cos^2 x = \sin^2 x \), we have: \[ \frac{\sin^4 x}{\cos^2 x} = \tan^2 x \cdot \sin^2 x. \] **Conclusion for Statement 3:** The statement is true. ### Final Conclusion: All statements are true.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Statement -1: sin 1 lt sin 2 lt sin3 Statement-2: sin3 lt sin2 lt sin1 Statement-3: sinx_(1) lt sinx_(2), x_(1) , x_(2) in (0,pi/2)

Statement-1 : If x^("log"_(x) (3-x)^(2)) = 25, then x =-2 Statement-2: a^("log"_(a) x) = x,"if" a gt 0, x gt 0 " and " a ne 1

Statement I sin ^(-1)(1/sqrte) gt tan^(-1)(1/sqrtpi) Statement II sin^(-1) x gt tan^(-1) y " for " x gt y , AA x, y in (0,1)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in [0, 2pi] is euqal to

Statement -1: If 2"sin"2x - "cos" 2x=1, x ne (2n+1) (pi)/(2), n in Z, "then sin" 2x + "cos" 2x = 5 Statement-2: "sin"2x + "cos"2x = (1+2"tan" x - "tan"^(2)x)/(1+"tan"^(2)x)

Statement -1:If e^{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] satisfie the equation x^(2)-9x +8=0 , "then " (cosx)/(cosx + sinx) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum sin^(2) x + sin^(4)x + sin^(6) x + .... oo is equal to tan^(2)x

Differentiate tan^(-1)'(sqrt(1+x^(2))-1)/(x) w.r.t. tan^(-1)x , when x ne 0 .