Home
Class 12
MATHS
Statement-1: If alpha, beta are differen...

Statement-1: If `alpha, beta` are different values of `x` satisfying `a cosx + b sinx =c, (b ne 0)`, then `tan((alpha+beta)/(2))=a/b`
Statement-2: The equation `sin^(2)x -1/sqrt(2)(sqrt(3)+1)sinx + sqrt(3)/4 =0` has two roots in `[0,pi/2]`
Statement-3: The number of solutions of `sin theta + sin5 theta = sin 3theta, theta in [0,pi]` is 5.

A

TTT

B

TFF

C

TTF

D

FFF

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze each statement one by one and determine their validity. ### Statement 1: **Statement:** If \( \alpha, \beta \) are different values of \( x \) satisfying \( a \cos x + b \sin x = c \) (where \( b \neq 0 \)), then \( \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{a}{b} \). **Solution:** 1. Start with the equation: \[ a \cos x + b \sin x = c \] Rearranging gives: \[ a \cos x = c - b \sin x \] 2. Square both sides: \[ a^2 \cos^2 x = (c - b \sin x)^2 \] Expanding the right side: \[ a^2 \cos^2 x = c^2 - 2bc \sin x + b^2 \sin^2 x \] 3. Use the identity \( \cos^2 x = 1 - \sin^2 x \): \[ a^2 (1 - \sin^2 x) = c^2 - 2bc \sin x + b^2 \sin^2 x \] Rearranging gives: \[ (a^2 + b^2) \sin^2 x - 2bc \sin x + (c^2 - a^2) = 0 \] 4. This is a quadratic equation in \( \sin x \). Let \( \sin x = t \): \[ (a^2 + b^2)t^2 - 2bct + (c^2 - a^2) = 0 \] 5. The roots \( t_1 = \sin \alpha \) and \( t_2 = \sin \beta \) can be found using the quadratic formula: \[ t = \frac{2bc \pm \sqrt{(2bc)^2 - 4(a^2 + b^2)(c^2 - a^2)}}{2(a^2 + b^2)} \] 6. The sum of the roots \( \sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2} \) and the product \( \sin \alpha \sin \beta = \frac{c^2 - a^2}{a^2 + b^2} \). 7. Using the identity for \( \tan\left(\frac{\alpha + \beta}{2}\right) \): \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\sin\left(\frac{\alpha + \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)} \] leads to the conclusion that: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{a}{b} \] **Conclusion:** The statement is **false** because it states \( \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{a}{b} \) instead of \( \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{b}{a} \). ### Statement 2: **Statement:** The equation \( \sin^2 x - \frac{1}{\sqrt{2}}(\sqrt{3}+1)\sin x + \frac{\sqrt{3}}{4} = 0 \) has two roots in \( [0, \frac{\pi}{2}] \). **Solution:** 1. Identify coefficients: - \( a = 1 \) - \( b = -\frac{1}{\sqrt{2}}(\sqrt{3}+1) \) - \( c = \frac{\sqrt{3}}{4} \) 2. Calculate the discriminant \( D \): \[ D = b^2 - 4ac \] Substituting values: \[ D = \left(-\frac{1}{\sqrt{2}}(\sqrt{3}+1)\right)^2 - 4 \cdot 1 \cdot \frac{\sqrt{3}}{4} \] Simplifying gives: \[ D = \frac{(\sqrt{3}+1)^2}{2} - \sqrt{3} \] 3. Check if \( D > 0 \) for two distinct roots: \[ (\sqrt{3}+1)^2 = 4 + 2\sqrt{3} \] Thus: \[ \frac{4 + 2\sqrt{3}}{2} - \sqrt{3} = 2 + \sqrt{3} - \sqrt{3} = 2 > 0 \] 4. Since \( D > 0 \), there are two distinct roots. Now check if both roots lie in \( [0, \frac{\pi}{2}] \). 5. The roots can be found using the quadratic formula: \[ \sin x = \frac{-b \pm \sqrt{D}}{2a} \] Both roots need to be checked against the range \( [0, 1] \). **Conclusion:** The statement is **false** because it does not guarantee both roots are in \( [0, \frac{\pi}{2}] \). ### Statement 3: **Statement:** The number of solutions of \( \sin \theta + \sin 5\theta = \sin 3\theta \) for \( \theta \in [0, \pi] \) is 5. **Solution:** 1. Rearranging gives: \[ \sin 5\theta + \sin \theta - \sin 3\theta = 0 \] 2. Using the sum-to-product identities: \[ 2 \sin\left(\frac{5\theta + \theta}{2}\right) \cos\left(\frac{5\theta - \theta}{2}\right) = \sin 3\theta \] 3. This leads to two equations: - \( \sin 3\theta = 0 \) - \( 2 \sin(3\theta) \cos(2\theta) = 0 \) 4. The solutions for \( \sin 3\theta = 0 \) give: \[ 3\theta = n\pi \implies \theta = \frac{n\pi}{3} \] For \( n = 0, 1, 2, 3 \) gives 4 solutions. 5. The second equation \( \cos(2\theta) = 0 \) gives: \[ 2\theta = \frac{\pi}{2} + n\pi \implies \theta = \frac{\pi}{4} + \frac{n\pi}{2} \] This gives 2 more solutions in the range. **Conclusion:** The total number of solutions is 6, not 5, thus the statement is **false**. ### Final Conclusion: All three statements are false. Therefore, the correct answer is option 4. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -G (Integer Answer type questions)|18 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Statement-1: The number of |cosx | = sinx in [0,4pi] is 4 Statement-2: The equation sin^(2)x -1/sqrt(2) (sqrt(3)+1) sinx + sqrt(3)/4=0 has two roots in [0,pi/2] . Statement-3:The number of solutions of sin theta + sin 5theta= sin 3theta, theta in [0,pi] is 5.

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is

The general solution of sin^2 theta sec theta +sqrt3 tan theta=0 is (n in 1)

Find number of solutions of equation sin^(2) theta- 4/(sin^(3) theta-1)=1- 4/(sin^(3) theta-1), theta in [0, 6pi] .

The number of solution satisfying the equations tan 4theta=cot 5theta and sin 2theta=cos theta in [0,2pi] is

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

Find values of theta satisfying sintheta+sin5theta=sin3theta such that 0<=theta<=pi

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

Find all the values of theta satisfying the equation sin theta + sin 5 theta = sin 3 theta, such that 0 le theta le pi.