Home
Class 12
MATHS
Find (dy)/(dx) " when " y = sin^(-1) ...

Find ` (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(y = \sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right)\), we will follow these steps: ### Step 1: Rewrite the expression We start with the given function: \[ y = \sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right) \] ### Step 2: Simplify the expression inside the inverse sine To differentiate \(y\), we can simplify the expression inside the inverse sine. We can express \(\frac{1+x^2}{2}\) in a different form: \[ \sqrt{\frac{1+x^2}{2}} = \sqrt{\frac{1}{2} + \frac{x^2}{2}} = \sqrt{\frac{1 + x^2}{2}} \] ### Step 3: Use trigonometric identities Let \(x^2 = 2\cos(2\theta)\). Then, we can find \(\theta\) as: \[ \cos(2\theta) = \frac{x^2}{2} \] Thus, we have: \[ \theta = \frac{1}{2} \cos^{-1}\left(\frac{x^2}{2}\right) \] ### Step 4: Substitute back into \(y\) Now substituting back into \(y\): \[ y = \sin^{-1}\left(\sqrt{\frac{1 + \cos(2\theta)}{2}}\right) \] Using the identity \(1 + \cos(2\theta) = 2\cos^2(\theta)\): \[ y = \sin^{-1}\left(\sqrt{\cos^2(\theta)}\right) = \sin^{-1}(\cos(\theta)) \] ### Step 5: Use the complementary angle identity Using the identity \(\sin^{-1}(\cos(\theta)) = \frac{\pi}{2} - \theta\): \[ y = \frac{\pi}{2} - \theta \] ### Step 6: Substitute \(\theta\) back Substituting \(\theta\) back in: \[ y = \frac{\pi}{2} - \frac{1}{2} \cos^{-1}\left(\frac{x^2}{2}\right) \] ### Step 7: Differentiate \(y\) Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 0 - \frac{1}{2} \cdot \frac{d}{dx}\left(\cos^{-1}\left(\frac{x^2}{2}\right)\right) \] Using the derivative of \(\cos^{-1}(u)\): \[ \frac{d}{dx}\left(\cos^{-1}(u)\right) = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] where \(u = \frac{x^2}{2}\) and \(\frac{du}{dx} = x\). ### Step 8: Substitute \(u\) back Now substituting \(u\) back: \[ \frac{dy}{dx} = -\frac{1}{2} \cdot \left(-\frac{1}{\sqrt{1 - \left(\frac{x^2}{2}\right)^2}} \cdot x\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{x}{2\sqrt{1 - \frac{x^4}{4}}} \] which can be rewritten as: \[ \frac{dy}{dx} = \frac{x}{\sqrt{4 - x^4}} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{x}{\sqrt{4 - x^4}} \]

To find \(\frac{dy}{dx}\) when \(y = \sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right)\), we will follow these steps: ### Step 1: Rewrite the expression We start with the given function: \[ y = \sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=e^xlog(1+x^2)

Find (dy)/(dx) in the following: y=sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2)) lt x lt 1/(sqrt(2))

Find (dy)/(dx) in the following: y=sin^(-1)((2x)/(1+x^2))

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

"Find "(dy)/(dx)" for "y=sin(x^(2)+1).

Using proper substitution, find (dy)/(dx) if y = tan^(-1)(sqrt(1+b^(2)x^(2)) - bx) .

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) for the function: y=a^(sin^(-1)x)^(2)

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^2