Home
Class 12
MATHS
Differentiate the following functions w....

Differentiate the following functions w.r.ts
(i) ` e^(x^(2)tan^(-1)x)/(sqrt(1-x^(2))`
(ii) ` x^(sinx) " " (x gt 0)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the given functions step by step, we will follow the standard rules of differentiation including the product rule, quotient rule, and chain rule. ### (i) Differentiate \( y = \frac{e^{x^2 \tan^{-1} x}}{\sqrt{1 - x^2}} \) 1. **Identify the function**: We have a quotient of two functions: the numerator \( u = e^{x^2 \tan^{-1} x} \) and the denominator \( v = \sqrt{1 - x^2} \). 2. **Apply the quotient rule**: The derivative of \( y = \frac{u}{v} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] 3. **Differentiate the numerator \( u \)**: - Using the chain rule: \[ \frac{du}{dx} = e^{x^2 \tan^{-1} x} \cdot \frac{d}{dx}(x^2 \tan^{-1} x) \] - Differentiate \( x^2 \tan^{-1} x \) using the product rule: \[ \frac{d}{dx}(x^2 \tan^{-1} x) = 2x \tan^{-1} x + x^2 \cdot \frac{1}{1 + x^2} \] - Thus, \[ \frac{du}{dx} = e^{x^2 \tan^{-1} x} \left( 2x \tan^{-1} x + \frac{x^2}{1 + x^2} \right) \] 4. **Differentiate the denominator \( v \)**: - Using the chain rule: \[ \frac{dv}{dx} = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \] 5. **Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule**: \[ \frac{dy}{dx} = \frac{\sqrt{1 - x^2} \cdot e^{x^2 \tan^{-1} x} \left( 2x \tan^{-1} x + \frac{x^2}{1 + x^2} \right) - e^{x^2 \tan^{-1} x} \cdot \left( \frac{-x}{\sqrt{1 - x^2}} \right)}{(1 - x^2)} \] 6. **Simplify the expression**: - Combine the terms in the numerator and simplify as needed. ### Final Result for (i): \[ \frac{dy}{dx} = \frac{e^{x^2 \tan^{-1} x}}{(1 - x^2)} \left( \sqrt{1 - x^2} \left( 2x \tan^{-1} x + \frac{x^2}{1 + x^2} \right) + x \right) \] --- ### (ii) Differentiate \( y = x^{\sin x} \) 1. **Identify the function**: We have \( y = x^{\sin x} \). 2. **Take the natural logarithm**: \[ \ln y = \sin x \cdot \ln x \] 3. **Differentiate both sides**: - Using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \] 4. **Solve for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = y \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] 5. **Substitute back for \( y \)**: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] ### Final Result for (ii): \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \ln x + \frac{\sin x}{x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following function tan^2x

Differentiate the following functions w.r.t. x: sin 2x

Differentiate the following functions w.r.t. x: tan 2x

Differentiate the following functions w.r.t. x: tan 7x

Differentiate the following functions w.r.t. x: sin "" (x)/(2)

Differentiate the following function w.r.t. x: x^(2) cos 5x

Differentiate the following functions w.r.t. x: sec ((x)/(2) -1)

Differentiate the following function w.r.t. x. tan (5x + 7)

Differentiate the following functions w.r.t. x: tan (4x -7)

Differentiate the following functions w.r.t. x: cos (2x -3)