Home
Class 12
MATHS
Find (dy)/(dx) of x^y+y^x=a^b...

Find `(dy)/(dx)` of `x^y+y^x=a^b`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) of the equation \(x^y + y^x = a^b\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides with respect to \(x\) We start with the equation: \[ x^y + y^x = a^b \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(x^y) + \frac{d}{dx}(y^x) = \frac{d}{dx}(a^b) \] Since \(a^b\) is a constant, its derivative is \(0\): \[ \frac{d}{dx}(x^y) + \frac{d}{dx}(y^x) = 0 \] ### Step 2: Differentiate \(x^y\) Using the product rule and chain rule: \[ \frac{d}{dx}(x^y) = y \cdot x^{y-1} + x^y \cdot \frac{dy}{dx} \cdot \ln(x) \] ### Step 3: Differentiate \(y^x\) Using the product rule and chain rule: \[ \frac{d}{dx}(y^x) = y^x \cdot \ln(y) + x^{y} \cdot \frac{dy}{dx} \] ### Step 4: Combine the derivatives Putting it all together, we have: \[ y \cdot x^{y-1} + y^x \cdot \ln(y) + x^y \cdot \frac{dy}{dx} \cdot \ln(x) = 0 \] ### Step 5: Solve for \(\frac{dy}{dx}\) Rearranging to isolate \(\frac{dy}{dx}\): \[ x^y \cdot \frac{dy}{dx} \cdot \ln(x) = - (y \cdot x^{y-1} + y^x \cdot \ln(y)) \] Now divide both sides by \(x^y \cdot \ln(x)\): \[ \frac{dy}{dx} = -\frac{y \cdot x^{y-1} + y^x \cdot \ln(y)}{x^y \cdot \ln(x)} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{y \cdot x^{y-1} + y^x \cdot \ln(y)}{x^y \cdot \ln(x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if 1-x+y-x y=0

Find (dy)/(dx) , if y^x+x^y+x^x=a^b .

Find (dy)/(dx) for y=x^xdot

Find (dy)/(dx) for y=x^xdot

Find (dy)/(dx)if 2=(x+y)^2

Find (dy)/(dx)\ if (x^2+y^2)^2=x y

Find (dy)/(dx) ifcos(x-y)=1

Find (dy)/(dx), y=x^x+x^(1/x)

Find dy/dx if x^2y-2y=x

Find dy/dx if x^2=4y