Home
Class 12
MATHS
if int 1/(1+sinx)dx = tan(x/2+a) + C the...

if `int 1/(1+sinx)dx = tan(x/2+a) + C` then find the value of a

A

`a=-pi/4, C in R`

B

`a=pi/4, C in R`

C

`a=(5pi)/(4), C in R`

D

`a=pi/3, C in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \int \frac{1}{1 + \sin x} \, dx \] and show that it can be expressed in the form \( \tan\left(\frac{x}{2} + a\right) + C \), and then find the value of \( a \). ### Step 1: Rationalizing the Integral We start with the integral: \[ \int \frac{1}{1 + \sin x} \, dx \] To simplify this, we can multiply the numerator and denominator by \( 1 - \sin x \): \[ \int \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} \, dx = \int \frac{1 - \sin x}{1 - \sin^2 x} \, dx \] ### Step 2: Using the Pythagorean Identity Using the identity \( 1 - \sin^2 x = \cos^2 x \), we rewrite the integral as: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx \] This can be split into two separate integrals: \[ \int \frac{1}{\cos^2 x} \, dx - \int \frac{\sin x}{\cos^2 x} \, dx \] ### Step 3: Evaluating the Integrals The first integral \( \int \frac{1}{\cos^2 x} \, dx \) is: \[ \int \sec^2 x \, dx = \tan x + C_1 \] The second integral \( \int \frac{\sin x}{\cos^2 x} \, dx \) can be solved using substitution. Let \( u = \cos x \), then \( du = -\sin x \, dx \), which gives: \[ -\int \frac{1}{u^2} \, du = \frac{1}{\cos x} + C_2 = \sec x + C_2 \] ### Step 4: Combining the Results Combining the results from the two integrals, we have: \[ \int \frac{1}{1 + \sin x} \, dx = \tan x - \sec x + C \] ### Step 5: Expressing in Terms of \( \tan\left(\frac{x}{2} + a\right) \) Now, we need to express \( \tan x - \sec x \) in the form \( \tan\left(\frac{x}{2} + a\right) \). Using the half-angle formulas: \[ \tan x = \frac{2 \tan\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)} \] \[ \sec x = \frac{1}{\cos x} = \frac{2}{1 + \tan^2\left(\frac{x}{2}\right)} \] Substituting these into our expression and simplifying will yield: \[ \tan\left(\frac{x}{2} - \frac{\pi}{4}\right) \] This implies that: \[ a = -\frac{\pi}{4} \] ### Final Answer Thus, the value of \( a \) is: \[ \boxed{-\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If int tan^(2) kx dx= (tan 3x)/(3)-x + C , find the value of k

Evaluate: int1/(1-2sinx)dx

Evaluate int(1)/(1+sinx)dx .

Evaluate int(1)/(1+sinx)dx .

Evaluate: int1/(1-2sinx)\ dx

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

Evaluate: int1/(1+sinx+cosx)dx

int (1-tan^2x)/(1+tan^2x) dx

Evaluate: int(dx)/((1+sinx)^(1/2))

Evaluate: int1/(1+sinx+cosx)\ dx