Home
Class 12
MATHS
The value of int(cos2x)/(cosx) dx is equ...

The value of `int(cos2x)/(cosx)` dx is equal to

A

`2sinx-ln|secx+tanx|+C`

B

`2sinx-ln|secx-tanx|+C`

C

`2sinx+ln|secx+tanx|+C`

D

`sinx-ln|secx-tanx|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos 2x}{\cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand using the double angle formula We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can rewrite the integral: \[ I = \int \frac{2 \cos^2 x - 1}{\cos x} \, dx \] ### Step 2: Split the integral Now, we can separate the integral into two parts: \[ I = \int \frac{2 \cos^2 x}{\cos x} \, dx - \int \frac{1}{\cos x} \, dx \] This simplifies to: \[ I = \int 2 \cos x \, dx - \int \sec x \, dx \] ### Step 3: Integrate each part 1. The integral of \( 2 \cos x \): \[ \int 2 \cos x \, dx = 2 \sin x \] 2. The integral of \( \sec x \): \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] ### Step 4: Combine the results Putting it all together, we have: \[ I = 2 \sin x - \ln |\sec x + \tan x| + C \] ### Final Answer Thus, the value of the integral is: \[ I = 2 \sin x - \ln |\sec x + \tan x| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(x+sinx)/(1+cosx) dx is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

The value of int(x e^ln(sinx)-cosx)dx is equal to

int(1)/(cosx-sinx)dx is equal to

Evaluate: int(cosx)/(cos3x)dx

Evaluate: int(cosx)/(cos3x)dx

int(secx)/(sqrt(cos2x)) dx is equal to

The value of int_(-2)^(2) |[x]| dx is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to

The value of int(dx)/(cos^3x sqrtsin2x) is equal to