Home
Class 12
MATHS
The value of inttan^(3)2xsec2x dx is equ...

The value of `inttan^(3)2xsec2x` dx is equal to:

A

`1/3sec^(2)2x-1/2sec2x+C`

B

`-1/6sec^(3)2x-1/2sec2x+C`

C

`1/6sec^(3)2x-1/2sec2x+C`

D

`1/3sec^(3)2x+1/2sec2x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^3(2x) \sec(2x) \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral Let: \[ I = \int \tan^3(2x) \sec(2x) \, dx \] We can express \( \tan^3(2x) \) as \( \tan^2(2x) \tan(2x) \) and use the identity \( \tan^2(2x) = \sec^2(2x) - 1 \): \[ I = \int \tan^2(2x) \sec(2x) \tan(2x) \, dx = \int (\sec^2(2x) - 1) \sec(2x) \tan(2x) \, dx \] ### Step 2: Use Substitution Let: \[ t = \sec(2x) \] Then, we differentiate \( t \): \[ \frac{dt}{dx} = 2 \sec(2x) \tan(2x) \implies dt = 2 \sec(2x) \tan(2x) \, dx \implies dx = \frac{dt}{2 \sec(2x) \tan(2x)} \] Substituting this into the integral gives: \[ I = \int (\sec^2(2x) - 1) t \cdot \frac{dt}{2t} = \frac{1}{2} \int (t^2 - 1) \, dt \] ### Step 3: Integrate Now we can integrate: \[ I = \frac{1}{2} \left( \frac{t^3}{3} - t \right) + C \] Substituting back \( t = \sec(2x) \): \[ I = \frac{1}{2} \left( \frac{\sec^3(2x)}{3} - \sec(2x) \right) + C \] ### Step 4: Simplify This simplifies to: \[ I = \frac{1}{6} \sec^3(2x) - \frac{1}{2} \sec(2x) + C \] ### Final Result Thus, the value of the integral is: \[ \int \tan^3(2x) \sec(2x) \, dx = \frac{1}{6} \sec^3(2x) - \frac{1}{2} \sec(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART-II ONLY ONE OPTION CORRECT TYPE|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

inttan^3xsec^2xdx

Write a value of inttan^3xsec^2x\ dx

inttan^(-1)sqrt(x)\ dx is equal to

The value of int(cos2x)/(cosx) dx is equal to

Write a value of inttan^6xsec^2x\ dx

Evaluate: inttan^3xsec^2xdx

int tan^(2)xsec^(4)x dx

The value of int_(-2)^(2) |[x]| dx is equal to

Evaluate inttan^(2)xdx

inttan^2xdx