Home
Class 12
MATHS
The value of inte^(tan^-1x) ((1+x+x^2)/...

The value of `inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx`

A

`xe^(tan^(-1)x)+C`

B

`x^(2)e^(tan^(-1)x)+C`

C

`1/xe^(tan^(-1)x)+C`

D

`xe^(cot^(-1)x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^{\tan^{-1} x} \frac{1 + x + x^2}{1 + x^2} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( T = \tan^{-1} x \). Then, we differentiate both sides: \[ dT = \frac{1}{1 + x^2} \, dx \implies dx = (1 + x^2) \, dT \] ### Step 2: Express \( x \) in terms of \( T \) From the substitution \( T = \tan^{-1} x \), we have: \[ x = \tan T \] ### Step 3: Substitute \( x \) and \( dx \) in the integral Now, substituting \( x \) and \( dx \) into the integral: \[ I = \int e^T \frac{1 + \tan T + \tan^2 T}{1 + \tan^2 T} (1 + \tan^2 T) \, dT \] Since \( 1 + \tan^2 T = \sec^2 T \), we can simplify: \[ I = \int e^T (1 + \tan T + \tan^2 T) \, dT \] ### Step 4: Simplify the integral Now, we can rewrite the integral: \[ I = \int e^T \sec^2 T \, dT + \int e^T \tan T \, dT \] Using the identity \( \sec^2 T = 1 + \tan^2 T \): \[ I = \int e^T \tan T \, dT + \int e^T \, dT \] ### Step 5: Integration by parts For the integral \( \int e^T \tan T \, dT \), we can use integration by parts: Let \( u = \tan T \) and \( dv = e^T \, dT \). Then, \( du = \sec^2 T \, dT \) and \( v = e^T \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus: \[ \int e^T \tan T \, dT = e^T \tan T - \int e^T \sec^2 T \, dT \] ### Step 6: Combine the integrals Now substituting back: \[ I = e^T \tan T - \int e^T \sec^2 T \, dT + \int e^T \, dT \] The integral \( \int e^T \sec^2 T \, dT \) cancels out: \[ I = e^T \tan T + C \] ### Step 7: Substitute back for \( T \) Now, substitute back \( T = \tan^{-1} x \): \[ I = e^{\tan^{-1} x} \tan(\tan^{-1} x) + C \] Since \( \tan(\tan^{-1} x) = x \), we have: \[ I = x e^{\tan^{-1} x} + C \] ### Final Answer Thus, the value of the integral is: \[ I = x e^{\tan^{-1} x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

Evaluate: inte^(tan^-1x)(1+x/(1+x^2))dx

Evaluate inte^(a tan^-1x)/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

Evaluate: inte^x(tan^-1x+1/(1+x^2))dx

Write a value of int((tan^(-1)x)^3)/(1+x^2)\ dx

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx