Home
Class 12
MATHS
The valueof intf(x)g^('')(x)-f^('')(x)g(...

The valueof `intf(x)g^('')(x)-f^('')(x)g(x)+C`

A

`(f(x)/g^(')x)+C`

B

`f^(')(x)g(x)-f(x)g^(')(x)+C`

C

`f(x)g^(')(x)-f^(')(x)g(x)+C`

D

`f(x)g^(')(x)+f^(')(x)g^(')(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( f(x) g''(x) - f''(x) g(x) \right) \, dx + C \), we will break it down step by step. ### Step 1: Separate the Integral We can separate the integral into two parts: \[ I = \int f(x) g''(x) \, dx - \int f''(x) g(x) \, dx + C \] ### Step 2: Apply Integration by Parts to the First Integral For the first integral \( \int f(x) g''(x) \, dx \), we will use integration by parts. Let: - \( u = f(x) \) (thus \( du = f'(x) \, dx \)) - \( dv = g''(x) \, dx \) (thus \( v = g'(x) \)) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we get: \[ \int f(x) g''(x) \, dx = f(x) g'(x) - \int g'(x) f'(x) \, dx \] ### Step 3: Substitute Back into the Integral Now substituting back into the integral \( I \): \[ I = \left( f(x) g'(x) - \int g'(x) f'(x) \, dx \right) - \int f''(x) g(x) \, dx + C \] ### Step 4: Apply Integration by Parts to the Second Integral Now we focus on the second integral \( \int f''(x) g(x) \, dx \). Again, we will use integration by parts. Let: - \( u = g(x) \) (thus \( du = g'(x) \, dx \)) - \( dv = f''(x) \, dx \) (thus \( v = f'(x) \)) Using the integration by parts formula again: \[ \int g(x) f''(x) \, dx = g(x) f'(x) - \int f'(x) g'(x) \, dx \] ### Step 5: Substitute Back into the Integral Substituting this back into our expression for \( I \): \[ I = f(x) g'(x) - \int g'(x) f'(x) \, dx - \left( g(x) f'(x) - \int f'(x) g'(x) \, dx \right) + C \] ### Step 6: Simplify the Expression Now, simplifying the expression: \[ I = f(x) g'(x) - g(x) f'(x) + \int f'(x) g'(x) \, dx - \int g'(x) f'(x) \, dx + C \] Notice that the two integral terms \( \int f'(x) g'(x) \, dx \) and \( -\int g'(x) f'(x) \, dx \) cancel each other out. ### Final Result Thus, we are left with: \[ I = f(x) g'(x) - g(x) f'(x) + C \] ### Conclusion The final value of the integral is: \[ \int \left( f(x) g''(x) - f''(x) g(x) \right) \, dx + C = f(x) g'(x) - g(x) f'(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx is,

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

If intg(x)dx=g(x) , then the value of the integral intf(x)g(x){f(x)+2f'(x)}dx is

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

Suppose f and g are functions having second derivatives f' and g' every where, if f(x).g(x)=1 for all x and f'', g'' are never zero then (f''(x))/(f'(x))-(g''(x))/(g'(x)) equals

Evaluate: If intf(x)dx=g(x),t h e nintf^(-1)(x)dx

If f(x) =x^(2)andg(x)=2x+1 are two real valued function, then evaluate : (f+g)(x),(f-g)(x),(fg)(x),(f)/(g)(x)

If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b) -f\ (x)+\ g(x) (c) f(x)-g(x) (d) {f(x)+g(x)}g(x)

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))