Home
Class 12
MATHS
int(xlnx)/(x^(2)-1)^(3//2) dx equals...

`int(xlnx)/(x^(2)-1)^(3//2)` dx equals

A

arc `secx-(lnx)/sqrt(x^(2)-1)+C`

B

`sec^(-1)x+(lnx)/sqrt(x^(2)-1)+C`

C

`cos^(-1)x-(lnx)/sqrt(x^(2)-1)+C`

D

`secx-(lnx)/sqrt(x^(2)-1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x \ln x}{(x^2 - 1)^{3/2}} \, dx, \] we will use integration by parts. Let's denote: - \( u = \ln x \) - \( dv = \frac{x}{(x^2 - 1)^{3/2}} \, dx \) Next, we need to find \( du \) and \( v \): 1. **Finding \( du \)**: \[ du = \frac{1}{x} \, dx \] 2. **Finding \( v \)**: To find \( v \), we need to integrate \( dv \): \[ v = \int \frac{x}{(x^2 - 1)^{3/2}} \, dx \] We can use the substitution \( t = x^2 - 1 \), which gives: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Thus, we have: \[ v = \int \frac{x}{t^{3/2}} \cdot \frac{dt}{2x} = \frac{1}{2} \int t^{-3/2} \, dt \] The integral of \( t^{-3/2} \) is: \[ \int t^{-3/2} \, dt = -2 t^{-1/2} + C = -\frac{2}{\sqrt{t}} + C \] Therefore: \[ v = -\frac{1}{\sqrt{x^2 - 1}} \] Now we can apply the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ I = \ln x \left(-\frac{1}{\sqrt{x^2 - 1}}\right) - \int \left(-\frac{1}{\sqrt{x^2 - 1}}\right) \left(\frac{1}{x}\right) \, dx \] This simplifies to: \[ I = -\frac{\ln x}{\sqrt{x^2 - 1}} + \int \frac{1}{x \sqrt{x^2 - 1}} \, dx \] Next, we need to solve the integral \( \int \frac{1}{x \sqrt{x^2 - 1}} \, dx \). We can use the substitution \( x = \sec \theta \), which gives: \[ dx = \sec \theta \tan \theta \, d\theta \] Thus: \[ \int \frac{1}{\sec \theta \sqrt{\sec^2 \theta - 1}} \sec \theta \tan \theta \, d\theta = \int \frac{\tan \theta}{\tan \theta} \, d\theta = \int d\theta = \theta + C \] Since \( \theta = \sec^{-1}(x) \), we have: \[ \int \frac{1}{x \sqrt{x^2 - 1}} \, dx = \sec^{-1}(x) \] Putting everything together: \[ I = -\frac{\ln x}{\sqrt{x^2 - 1}} + \sec^{-1}(x) + C \] Thus, the final answer is: \[ \int \frac{x \ln x}{(x^2 - 1)^{3/2}} \, dx = -\frac{\ln x}{\sqrt{x^2 - 1}} + \sec^{-1}(x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

int(dx)/((x^3-1)^(2/3)x^2) is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(1)/((x-1)sqrt(x^(2)-1))dx equals

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int(3x+1)/(2x^(2)+x-1)dx

int(x^(3)-1)/(x^(3)+x) dx is equal to: