Home
Class 12
MATHS
The value of int(x e^ln(sinx)-cosx)dx ...

The value of `int(x e^ln(sinx)-cosx)dx` is equal to

A

`xcosx+C`

B

`sinx-xcosx+C`

C

`-e^(ln x)cosx+C`

D

`sinx+xcosx+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int (x e^{\ln(\sin x)} - \cos x) \, dx \), we can follow these steps: ### Step 1: Simplify the expression We know that \( e^{\ln(a)} = a \). Therefore, we can simplify \( e^{\ln(\sin x)} \) to \( \sin x \). This gives us: \[ I = \int (x \sin x - \cos x) \, dx \] ### Step 2: Separate the integral We can separate the integral into two parts: \[ I = \int x \sin x \, dx - \int \cos x \, dx \] ### Step 3: Solve the integral \( \int x \sin x \, dx \) using integration by parts Let: - \( u = x \) (then \( du = dx \)) - \( dv = \sin x \, dx \) (then \( v = -\cos x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x \sin x \, dx = -x \cos x - \int -\cos x \, dx \] This simplifies to: \[ \int x \sin x \, dx = -x \cos x + \int \cos x \, dx \] ### Step 4: Solve the integral \( \int \cos x \, dx \) The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x \] ### Step 5: Combine the results Substituting back into our expression for \( \int x \sin x \, dx \): \[ \int x \sin x \, dx = -x \cos x + \sin x \] ### Step 6: Substitute back into the original integral Now substituting this back into our expression for \( I \): \[ I = (-x \cos x + \sin x) - \int \cos x \, dx \] Since \( \int \cos x \, dx = \sin x \), we have: \[ I = -x \cos x + \sin x - \sin x \] The \( \sin x \) terms cancel out: \[ I = -x \cos x + C \] ### Final Result Thus, the value of the integral is: \[ I = -x \cos x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(x+sinx)/(1+cosx) dx is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

int e^x(sinx+cosx)dx=

int(In(tanx))/(sinx cosx)dx " is equal to "

inte^(x)(sinx+cosx)dx=?

The value of the integral intx/(1+xtanx)dx is equal to (A) log|xcosx+sinx|+c (B) log|cosx+x| (C) log|cosx+xsinx|+c (D) none of these

int(1)/(cosx-sinx)dx is equal to