Home
Class 12
MATHS
The value of int1/(x^(2)(x^(4)+1)^(3//4)...

The value of `int1/(x^(2)(x^(4)+1)^(3//4))` dx is equal to

A

`(1+1/x^(4))^(/1//4)` + C

B

`(x^(4)+1)^(1//4)+C`

C

`(1-1/x^(4))^(1//4)+C`

D

`-(1+1/x^(4))^(1//4)`+C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx \] ### Step 2: Simplify the Expression We can rewrite the integral by factoring out \( x^4 \) from the term \( (x^4 + 1)^{3/4} \): \[ I = \int \frac{1}{x^2 \left(x^4 \left(1 + \frac{1}{x^4}\right)\right)^{3/4}} \, dx \] This simplifies to: \[ I = \int \frac{1}{x^2 x^{3} \left(1 + \frac{1}{x^4}\right)^{3/4}} \, dx \] \[ = \int \frac{1}{x^5 \left(1 + \frac{1}{x^4}\right)^{3/4}} \, dx \] ### Step 3: Substitution Let \( t = 1 + \frac{1}{x^4} \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -\frac{4}{x^5} \implies dx = -\frac{x^5}{4} dt \] ### Step 4: Substitute in the Integral Substituting \( dx \) and \( t \) into the integral: \[ I = \int \frac{-\frac{x^5}{4}}{x^5 t^{3/4}} \, dt \] This simplifies to: \[ I = -\frac{1}{4} \int t^{-3/4} \, dt \] ### Step 5: Integrate Now we integrate: \[ I = -\frac{1}{4} \cdot \frac{t^{1/4}}{1/4} + C = -t^{1/4} + C \] ### Step 6: Substitute Back Now substitute back \( t = 1 + \frac{1}{x^4} \): \[ I = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int (dx)/(x^(2)(x^(4)+1)^(3/4))is

int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is