Home
Class 12
MATHS
The value of int(dx)/(xsqrt(1-x^(3))) is...

The value of `int(dx)/(xsqrt(1-x^(3)))` is equal to

A

`1/3ln |(sqrt(1-x^(2))-1)/(sqrt(1-x^(2))+1)|+C`

B

`1/2"ln"|(sqrt(1-x^(2))+1)/(sqrt(1-x^(2))-1)|+C`

C

`1/3ln|1/sqrt(1-x^(3))|+C`

D

`1/3ln|1-x^(3)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{x \sqrt{1 - x^3}} \), we will follow these steps: ### Step 1: Substitution We start by substituting \( 1 - x^3 = t^2 \). This gives us: \[ dx = \frac{d(1 - x^3)}{-3x^2} = -\frac{1}{3x^2} dt \] ### Step 2: Rewrite the Integral Substituting \( dx \) into the integral, we have: \[ I = \int \frac{-\frac{1}{3x^2} dt}{x \sqrt{t^2}} = \int \frac{-\frac{1}{3x^2} dt}{x t} \] Since \( \sqrt{t^2} = t \) (assuming \( t \geq 0 \)), we can rewrite the integral as: \[ I = -\frac{1}{3} \int \frac{dt}{x^3} \] ### Step 3: Express \( x^3 \) in terms of \( t \) From our substitution \( 1 - x^3 = t^2 \), we can express \( x^3 \) as: \[ x^3 = 1 - t^2 \] Thus, the integral becomes: \[ I = -\frac{1}{3} \int \frac{dt}{1 - t^2} \] ### Step 4: Integral of \( \frac{1}{1 - t^2} \) The integral \( \int \frac{dt}{1 - t^2} \) can be solved using the formula: \[ \int \frac{dt}{1 - t^2} = \frac{1}{2} \ln \left| \frac{1 + t}{1 - t} \right| + C \] So we have: \[ I = -\frac{1}{3} \cdot \frac{1}{2} \ln \left| \frac{1 + t}{1 - t} \right| + C = -\frac{1}{6} \ln \left| \frac{1 + t}{1 - t} \right| + C \] ### Step 5: Substitute back for \( t \) Now we substitute back \( t = \sqrt{1 - x^3} \): \[ I = -\frac{1}{6} \ln \left| \frac{1 + \sqrt{1 - x^3}}{1 - \sqrt{1 - x^3}} \right| + C \] ### Final Answer Thus, the value of the integral is: \[ I = -\frac{1}{6} \ln \left| \frac{1 + \sqrt{1 - x^3}}{1 - \sqrt{1 - x^3}} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

The value of int(dx)/(cos^3x sqrtsin2x) is equal to

The value of int_(0)^(oo)(dx)/(1+x^(4)) is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

Evaluate : int(dx)/(xsqrt(x^(6)+1)) equals

Evaluate : int(dx)/(xsqrt(x^4-1))

int( dx )/( x ( x^(7) +1)) is equal to

Evaluate: int(dx)/(xsqrt(x^(6)-16))=

The value of int_(0)^(3) xsqrt(1+x)dx , is