Home
Class 12
MATHS
intsqrt((e^x+1)/(e^x-1))dx (A) ln (e^(...

`intsqrt((e^x+1)/(e^x-1))dx` `(A) ln (e^(x)+sqrt(e^(2x)-1))-sec^(-1)(e^(x))`+C `(B) ln(e^(x)+sqrt(e^(2x)-1))+sec^(-1)(e^(x))+C` `(C) ln (e^(x)-sqrt(e^(2x)-1))-sec^(-1)(e^(x))`+C `(D) ln(e^(x)+sqrt(e^(2x)-1))-sin^(-1)(e^(-x))+C`

A

`ln (e^(x)+sqrt(e^(2x)-1))-sec^(-1)(e^(x))`+C

B

`ln(e^(x)+sqrt(e^(2x)-1)+sec^(-1)(e^(x))+C`

C

`ln (e^(x)-sqrt(e^(2x)-1)-sec^(-1)(e^(x))`+C

D

`ln(e^(x)+sqrt(e^(2x)-1)-sin^(-1)(e^(x))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{e^x + 1}{e^x - 1}} \, dx \), we can follow these steps: ### Step 1: Rationalize the Integral Multiply and divide the integrand by \( e^x + 1 \): \[ \int \sqrt{\frac{e^x + 1}{e^x - 1}} \, dx = \int \frac{(e^x + 1) \sqrt{e^x + 1}}{\sqrt{(e^x - 1)(e^x + 1)}} \, dx \] ### Step 2: Simplify the Denominator The denominator can be simplified using the difference of squares: \[ \sqrt{(e^x - 1)(e^x + 1)} = \sqrt{e^{2x} - 1} \] Thus, the integral becomes: \[ \int \frac{(e^x + 1)}{\sqrt{e^{2x} - 1}} \, dx \] ### Step 3: Split the Integral Now, we can split the integral into two parts: \[ I = \int \frac{e^x}{\sqrt{e^{2x} - 1}} \, dx + \int \frac{1}{\sqrt{e^{2x} - 1}} \, dx \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int \frac{e^x}{\sqrt{e^{2x} - 1}} \, dx, \quad I_2 = \int \frac{1}{\sqrt{e^{2x} - 1}} \, dx \] ### Step 4: Solve \( I_1 \) For \( I_1 \), use the substitution \( t = e^x \), which gives \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \): \[ I_1 = \int \frac{t}{\sqrt{t^2 - 1}} \cdot \frac{dt}{t} = \int \frac{1}{\sqrt{t^2 - 1}} \, dt \] The integral \( \int \frac{1}{\sqrt{t^2 - 1}} \, dt \) is known to be: \[ \ln(t + \sqrt{t^2 - 1}) + C \] Substituting back \( t = e^x \): \[ I_1 = \ln(e^x + \sqrt{e^{2x} - 1}) + C_1 \] ### Step 5: Solve \( I_2 \) For \( I_2 \), we can use the same substitution \( t = e^x \): \[ I_2 = \int \frac{1}{\sqrt{t^2 - 1}} \cdot \frac{dt}{t} = \int \frac{1}{\sqrt{t^2 - 1}} \, dt \] This integral is: \[ \sin^{-1}\left(\frac{1}{t}\right) + C_2 \] Substituting back \( t = e^x \): \[ I_2 = -\sin^{-1}(e^{-x}) + C_2 \] ### Step 6: Combine Results Now combine both integrals: \[ I = I_1 + I_2 = \ln(e^x + \sqrt{e^{2x} - 1}) - \sin^{-1}(e^{-x}) + C \] ### Final Answer Thus, the final answer is: \[ \int \sqrt{\frac{e^x + 1}{e^x - 1}} \, dx = \ln(e^x + \sqrt{e^{2x} - 1}) - \sin^{-1}(e^{-x}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section E): Integration by trignometric functions:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Reduction Formulae|2 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Section C: Integration by parts:|6 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int2/((e^x+e^(-x))^2)\ dx (a) ( e^(-x))/(e^x+e^(-x))+C (b) -1/(e^x+e^(-x))+C (c) (-1)/((e^x+1)^2)+C (d) 1/(e^x-e^(-x))+C

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

int(e^x(1+x))/(cos^2(x e^x))\ dx= (a) 2(log)_ecos(x e^x)+C (b) sec(x e^x)+C (c) tan(x e^x)+C (d) tan(x+e^x)+C

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

If y=sqrt((1+e^x)/(1-e^x)),s howt h a t(dy)/(dx)=(e^x)/((1-e^x)sqrt(1-e^(2x)))

Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to(A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) (c) -e^x/((1+e^x)^3) (d) (-1)/((1+e^x)^3)

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to