Home
Class 12
MATHS
If int (xtan^(-1)x)/sqrt(1+x^2) dx = sqr...

If `int (xtan^(-1)x)/sqrt(1+x^2) dx = sqrt(1+x^2)f(x)+Aln|x+sqrt(x^2+1)|+c` then

A

`f(x) = tan^(-1)x, A=-1`

B

`f(x) = tan^(-1)x,A=1`

C

`f(x)=2tan^(-1)x, A=-1`

D

`(x) = 2tan^(-1)x,A=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x \tan^{-1}(x)}{\sqrt{1+x^2}} \, dx \] we will use integration by parts and a substitution method. Let's denote \[ I = \int \frac{x \tan^{-1}(x)}{\sqrt{1+x^2}} \, dx. \] ### Step 1: Integration by Parts We will use integration by parts, where we let: - \( u = \tan^{-1}(x) \) - \( dv = \frac{x}{\sqrt{1+x^2}} \, dx \) Now, we need to find \( du \) and \( v \): - The derivative of \( u \) is: \[ du = \frac{1}{1+x^2} \, dx \] - To find \( v \), we integrate \( dv \): \[ v = \int \frac{x}{\sqrt{1+x^2}} \, dx. \] Using the substitution \( w = 1+x^2 \), we have \( dw = 2x \, dx \), or \( dx = \frac{dw}{2x} \). This gives us: \[ v = \int \frac{x}{\sqrt{w}} \cdot \frac{dw}{2x} = \frac{1}{2} \int w^{-1/2} \, dw = \sqrt{1+x^2}/2. \] ### Step 2: Applying Integration by Parts Now, applying the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left(\tan^{-1}(x) \cdot \frac{\sqrt{1+x^2}}{2}\right) - \int \frac{\sqrt{1+x^2}}{2} \cdot \frac{1}{1+x^2} \, dx. \] ### Step 3: Simplifying the Integral The remaining integral is: \[ \int \frac{\sqrt{1+x^2}}{2(1+x^2)} \, dx = \frac{1}{2} \int \frac{1}{\sqrt{1+x^2}} \, dx. \] This integral can be solved using the substitution \( x = \tan(\theta) \), leading to: \[ \int \frac{1}{\sqrt{1+x^2}} \, dx = \ln |x + \sqrt{1+x^2}| + C. \] ### Step 4: Final Expression Putting it all together, we have: \[ I = \frac{\tan^{-1}(x) \sqrt{1+x^2}}{2} - \frac{1}{2} \ln |x + \sqrt{1+x^2}| + C. \] ### Conclusion Thus, we can express the integral as: \[ \int \frac{x \tan^{-1}(x)}{\sqrt{1+x^2}} \, dx = \sqrt{1+x^2} \cdot f(x) + A \ln |x + \sqrt{1+x^2}| + C, \] where \( f(x) = \frac{1}{2} \tan^{-1}(x) \) and \( A = -\frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|16 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-12|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

int 1/((1-x^2)sqrt(1+x^2))dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c then

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

If int cos^(-1)x+cos^(-1)sqrt(1-x^2) dx= Ax+f(x)sin^(-1)x-2sqrt(1-x^2)+c then