Home
Class 12
MATHS
int(x+sqrt(x+1))/(x+2) dx is equal to:...

`int(x+sqrt(x+1))/(x+2)` dx is equal to:

A

(a)`(x+1)-2sqrt(x+1)+2"ln"|x+2|=2tan^(-1)sqrt(x+1)+C`

B

(b)`(x+1)+2sqrt(x+2)-2"ln"|x+2|-2tan^(-1)sqrt(x+2)+C`

C

(c)`(x+1)+2sqrt(x+1)-2"ln"|x+2|-2tan^(-1)sqrt(x+1)+C`

D

(d)`(x=1)+2sqrt(x+2)-2"ln"|x+1|+2tan^(-1)sqrt(x+2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x + \sqrt{x + 1}}{x + 2} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( x + 1 = t^2 \). Then, we have: \[ x = t^2 - 1 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 2: Substitute in the Integral Now substituting \( x \) and \( dx \) into the integral: \[ I = \int \frac{(t^2 - 1) + t}{(t^2 - 1) + 2} \cdot 2t \, dt \] This simplifies to: \[ I = \int \frac{t^2 + t - 1}{t^2 + 1} \cdot 2t \, dt \] ### Step 3: Simplifying the Integral Now we can rewrite the integral: \[ I = 2 \int \frac{t^3 + t^2 - t}{t^2 + 1} \, dt \] We can separate this into simpler integrals: \[ I = 2 \left( \int t \, dt + \int \frac{-t}{t^2 + 1} \, dt \right) \] ### Step 4: Solve Each Integral 1. For \( \int t \, dt \): \[ \int t \, dt = \frac{t^2}{2} \] 2. For \( \int \frac{-t}{t^2 + 1} \, dt \): Let \( u = t^2 + 1 \), then \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \): \[ \int \frac{-t}{t^2 + 1} \, dt = -\frac{1}{2} \ln |t^2 + 1| \] ### Step 5: Combine Results Combining the results, we have: \[ I = 2 \left( \frac{t^2}{2} - \frac{1}{2} \ln |t^2 + 1| \right) + C \] This simplifies to: \[ I = t^2 - \ln |t^2 + 1| + C \] ### Step 6: Back Substitute Recall that \( t^2 = x + 1 \): \[ I = (x + 1) - \ln |(x + 1) + 1| + C \] This gives us: \[ I = x + 1 - \ln |x + 2| + C \] ### Step 7: Final Answer Thus, the final result is: \[ \int \frac{x + \sqrt{x + 1}}{x + 2} \, dx = x + 1 - \ln |x + 2| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|16 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-12|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int sqrt((x)/( 1-x))dx is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(x+1)sqrt((x+2)/(x-2))dx

int(1+x)/(1+3sqrt(x))dx is equal to

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to