Home
Class 12
MATHS
The value of int sqrt((1-cosx)/(cosalpha...

The value of `int sqrt((1-cosx)/(cosalpha-cosx)) dx` where `0ltalphaltxltpi` is equal to:

A

`2"ln"(cosalpha/2-cosx/2)+C`

B

`sqrt(2)"ln"(cosalpha/2-cosx/2)+C`

C

`2sqrt(2)"ln"(cosalpha/2-cosx/2)+C`

D

`-2sin^(-1)(cosx/2)/(cosalpha/2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{1 - \cos x}{\cos \alpha - \cos x}} \, dx \) where \( 0 < \alpha < \pi \) and \( 0 < x < \pi \), we will follow these steps: ### Step 1: Simplify the expression inside the integral We know that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ \int \sqrt{\frac{2 \sin^2\left(\frac{x}{2}\right)}{\cos \alpha - \cos x}} \, dx \] ### Step 2: Rewrite \( \cos x \) using the half-angle formula Using the half-angle formula for cosine: \[ \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] We can express \( \cos \alpha - \cos x \) as: \[ \cos \alpha - \cos x = \cos \alpha - (2 \cos^2\left(\frac{x}{2}\right) - 1) = \cos \alpha + 1 - 2 \cos^2\left(\frac{x}{2}\right) \] ### Step 3: Substitute into the integral Now substituting back into the integral, we get: \[ \int \sqrt{\frac{2 \sin^2\left(\frac{x}{2}\right)}{\cos \alpha + 1 - 2 \cos^2\left(\frac{x}{2}\right)}} \, dx \] ### Step 4: Factor out constants We can factor out constants from the square root: \[ = \sqrt{2} \int \frac{\sin\left(\frac{x}{2}\right)}{\sqrt{\cos \alpha + 1 - 2 \cos^2\left(\frac{x}{2}\right)}} \, dx \] ### Step 5: Use substitution Let \( t = \cos\left(\frac{x}{2}\right) \), then \( dx = -\frac{2}{\sqrt{1 - t^2}} \, dt \). The limits of integration will change accordingly. ### Step 6: Change the limits of integration When \( x = 0 \), \( t = 1 \) and when \( x = \pi \), \( t = 0 \). Thus, the integral becomes: \[ -\sqrt{2} \int_{1}^{0} \frac{\sqrt{1 - t^2}}{\sqrt{\cos \alpha + 1 - 2t^2}} \cdot \frac{2}{\sqrt{1 - t^2}} \, dt \] This simplifies to: \[ 2\sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{\cos \alpha + 1 - 2t^2}} \, dt \] ### Step 7: Evaluate the integral The integral can be evaluated using the standard result: \[ \int \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1}\left(\frac{u}{a}\right) + C \] where \( a^2 = \cos \alpha + 1 \). ### Final Result After evaluating the integral and substituting back, we find: \[ = -2 \sqrt{2} \sin^{-1}\left(\frac{t}{\sqrt{\cos \alpha + 1}}\right) \bigg|_{0}^{1} \] This leads us to the final answer.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|16 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-12|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int(1-cosx)/(cosx(1+cosx))dx

int(1-cosx)/(cosx(1+cosx))dx

Evaluate: int(1+cosalphacosx)/(cosalpha+cosx) dx

Evaluate int(1-cosx)/(1+cosx)dx .

int(1-cosx)/(1+cosx)\ dx

The value of int(cos2x)/(cosx) dx is equal to

Evaluate int ((1+cosx)/(1-cosx)) dx

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

int (cosx-cos2x)/(1-cosx) dx

intcosx/sqrt(1+cosx)dx