Home
Class 12
MATHS
If I(n)=int(sinx+cosx)^(n)dx, snd I(n)=1...

If `I_(n)=int(sinx+cosx)^(n)`dx, snd `I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2)` then k=

A

(n+1)

B

`(n-1)`

C

`(2n+1)`

D

`(2n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the given expression for \( I_n \). Let's break down the solution step by step. ### Step 1: Understand the given expression We have: \[ I_n = \int (\sin x + \cos x)^n \, dx \] and the recurrence relation: \[ I_n = \frac{1}{n} (\sin x + \cos x)^{n-1} (\sin x - \cos x) + \frac{2k}{n} I_{n-2} \] ### Step 2: Evaluate \( I_2 \) Let’s first evaluate \( I_2 \): \[ I_2 = \int (\sin x + \cos x)^2 \, dx \] Expanding the integrand: \[ (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2 \sin x \cos x = 1 + \sin(2x) \] Thus, \[ I_2 = \int (1 + \sin(2x)) \, dx = x - \frac{1}{2} \cos(2x) + C \] ### Step 3: Substitute \( n = 2 \) in the recurrence relation Now, substituting \( n = 2 \) in the recurrence relation: \[ I_2 = \frac{1}{2} (\sin x + \cos x)^{1} (\sin x - \cos x) + \frac{2k}{2} I_0 \] This simplifies to: \[ I_2 = \frac{1}{2} (\sin x + \cos x)(\sin x - \cos x) + k I_0 \] ### Step 4: Evaluate \( I_0 \) Now, we calculate \( I_0 \): \[ I_0 = \int (\sin x + \cos x)^0 \, dx = \int 1 \, dx = x + C \] ### Step 5: Substitute \( I_0 \) into the equation Substituting \( I_0 \) into the equation for \( I_2 \): \[ I_2 = \frac{1}{2} (\sin x + \cos x)(\sin x - \cos x) + k(x + C) \] ### Step 6: Simplify the expression The expression \( \frac{1}{2} (\sin x + \cos x)(\sin x - \cos x) \) can be simplified: \[ \frac{1}{2} (\sin^2 x - \cos^2 x) = \frac{1}{2} \cdot \frac{1}{2} \sin(2x) = \frac{1}{2} \cdot \frac{1}{2} \cdot \sin(2x) \] Thus, we have: \[ I_2 = \frac{1}{2} \sin(2x) + kx + C \] ### Step 7: Compare coefficients Now we compare the two expressions for \( I_2 \): 1. From direct integration: \( I_2 = x - \frac{1}{2} \cos(2x) + C \) 2. From recurrence: \( I_2 = \frac{1}{2} \sin(2x) + kx + C \) ### Step 8: Equate coefficients Comparing the coefficients of \( x \): \[ 1 = k \implies k = 1 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|16 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-2 Part-12|1 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

int(dx)/((sinx-2cosx)(2sinx+cosx))

int nx^(n-1) cosx^n dx

If I_n=intxcos^nxdx,prove that: I_n=1/n cos^(n-1)x(sinx)+(n-1)/(n)I_(n-2)

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

int(1+sinx)/(sinx(1+cosx))dx

int(1+sinx)/(sinx(1+cosx))dx

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

int(cosx)/((1+sinx)(2+sinx))dx