Home
Class 12
MATHS
Solve the following systems of liner a e...

Solve the following systems of liner a equations by cramer rule . `(i)2x-y+3z=8`, `-x+2y+z=4`, `3x+y-4z=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of linear equations using Cramer's Rule, we will follow these steps: ### Step 1: Write the equations in standard form We have the following equations: 1. \( 2x - y + 3z = 8 \) 2. \( -x + 2y + z = 4 \) 3. \( 3x + y - 4z = 0 \) ### Step 2: Form the coefficient matrix \( A \), variable matrix \( X \), and constant matrix \( B \) The coefficient matrix \( A \) is formed by the coefficients of \( x \), \( y \), and \( z \): \[ A = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{bmatrix} \] The variable matrix \( X \) is: \[ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \] The constant matrix \( B \) is: \[ B = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix} \] ### Step 3: Calculate the determinant \( D \) of the matrix \( A \) To find \( D \), we calculate the determinant of \( A \): \[ D = \begin{vmatrix} 2 & -1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & -4 \end{vmatrix} \] Using the determinant formula: \[ D = 2 \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} - (-1) \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} + 3 \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} = (2)(-4) - (1)(1) = -8 - 1 = -9 \) 2. \( \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = (-1)(-4) - (1)(3) = 4 - 3 = 1 \) 3. \( \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1)(1) - (2)(3) = -1 - 6 = -7 \) Now substituting back into the determinant \( D \): \[ D = 2(-9) + 1 + 3(-7) = -18 + 1 - 21 = -38 \] ### Step 4: Calculate \( D_x \), \( D_y \), and \( D_z \) To find \( D_x \), we replace the first column of \( A \) with \( B \): \[ D_x = \begin{vmatrix} 8 & -1 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & -4 \end{vmatrix} \] Calculating \( D_x \): \[ D_x = 8 \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} - (-1) \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} + 3 \begin{vmatrix} 4 & 2 \\ 0 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 1 \\ 1 & -4 \end{vmatrix} = -9 \) (from previous calculation) 2. \( \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} = (4)(-4) - (1)(0) = -16 \) 3. \( \begin{vmatrix} 4 & 2 \\ 0 & 1 \end{vmatrix} = (4)(1) - (2)(0) = 4 \) Now substituting back into \( D_x \): \[ D_x = 8(-9) + 16 + 3(4) = -72 + 16 + 12 = -44 \] Next, for \( D_y \), we replace the second column of \( A \) with \( B \): \[ D_y = \begin{vmatrix} 2 & 8 & 3 \\ -1 & 4 & 1 \\ 3 & 0 & -4 \end{vmatrix} \] Calculating \( D_y \): \[ D_y = 2 \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} - 8 \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} + 3 \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 1 \\ 0 & -4 \end{vmatrix} = -16 \) 2. \( \begin{vmatrix} -1 & 1 \\ 3 & -4 \end{vmatrix} = 1 \) 3. \( \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} = 12 \) Now substituting back into \( D_y \): \[ D_y = 2(-16) - 8(1) + 3(12) = -32 - 8 + 36 = -4 \] Finally, for \( D_z \), we replace the third column of \( A \) with \( B \): \[ D_z = \begin{vmatrix} 2 & -1 & 8 \\ -1 & 2 & 4 \\ 3 & 1 & 0 \end{vmatrix} \] Calculating \( D_z \): \[ D_z = 2 \begin{vmatrix} 2 & 4 \\ 1 & 0 \end{vmatrix} - (-1) \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} + 8 \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 4 \\ 1 & 0 \end{vmatrix} = -4 \) 2. \( \begin{vmatrix} -1 & 4 \\ 3 & 0 \end{vmatrix} = 12 \) 3. \( \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = -7 \) Now substituting back into \( D_z \): \[ D_z = 2(-4) + 12 + 8(-7) = -8 + 12 - 56 = -52 \] ### Step 5: Calculate \( x \), \( y \), and \( z \) Using Cramer's Rule: \[ x = \frac{D_x}{D} = \frac{-44}{-38} = \frac{22}{19} \] \[ y = \frac{D_y}{D} = \frac{-4}{-38} = \frac{2}{19} \] \[ z = \frac{D_z}{D} = \frac{-52}{-38} = \frac{26}{19} \] ### Final Solution The solution to the system of equations is: \[ x = \frac{22}{19}, \quad y = \frac{2}{19}, \quad z = \frac{26}{19} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations by Cramers rule: 2x-y=-2,\ \ \ 3x+4y=3

Solve the following system of linear equations by Cramers rule: x+2y=1,\ \ \ 3x+y=4

Solve the following system of linear equations by Cramers rule: x-2y=4,\ \ -3x+5y=-7

Solve the following system of linear equations by Cramers rule: 2x-y=17 ,\ \ \ 3x+5y=6

Solve the following system of linear equations by Cramers rule: x+y=5,\ \ y+z=3,\ \ x+z=4

Solve the following system of linear equations by Cramers rule: 2x+3y=10 ,\ \ \ x+6y=4

Solve the following system of equation by Cramer's rule. x+y=4 and 3x-2y=9

Solve the following system of equations by Cramers rule 2x-y=17 , 3x+5y=6

Solve the following system of linear equations by Cramers rule: 2y-3z=0,\ \ x+3y=-4,\ \ 3x+4y=3

Solve the following system of linear equations by Cramers rule: 2x-3y-4z=29 ,\ -2x+5y-z=-15 ,\ \ 3x-y+5z=-11

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-D
  1. For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0....

    Text Solution

    |

  2. Find the total number of possible square matrix. A order 3 with all re...

    Text Solution

    |

  3. If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

    Text Solution

    |

  4. Apply Cramer's rule to solve the simultaneous equations. (i)x+2y+3z...

    Text Solution

    |

  5. Solve using Cramer's rule:(4)/(x+5)+(3)/(y+7)=-1&(6)/(x+5)-(6)/(y+7)=-...

    Text Solution

    |

  6. Find those values of c for which the equations: 2x+3y=3,(c+ 2)x + (c +...

    Text Solution

    |

  7. Solve the following systems of liner a equations by cramer rule . (i...

    Text Solution

    |

  8. Determine for that values of lambda and mu the following system of eq...

    Text Solution

    |

  9. Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1...

    Text Solution

    |

  10. Compute A^(-1), if A=[{:(,3,-2,3),(,2,1,-1),(,4,-3,2):}]. Hence sove t...

    Text Solution

    |

  11. Show that following system of linear equations is inconsistent: 4x-...

    Text Solution

    |

  12. If A=[{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x...

    Text Solution

    |

  13. If A=[[a,b],[c,d]] (where b c!=0 ) satisfies the equations x^2+k=0,t h...

    Text Solution

    |

  14. If the system of equations x + 2y + 3z = 4, x+ py+ 2z = 3, x+ 4y +u z ...

    Text Solution

    |

  15. Let lambda and alpha be real. Then the numbers of intergral values ...

    Text Solution

    |

  16. Let [{:(,a,o,b),(,1,e,1),(,c,o,d):}]=[{:(,0),(,0),(,0):}] where a,b,c,...

    Text Solution

    |

  17. a ,b ,c are distinct real numbers not equal to one. If a x+y+z=0,x+b y...

    Text Solution

    |