Home
Class 12
MATHS
If A=[{:(,1,0,2),(,0,2,1),(,2,0,3):}] is...

If A=`[{:(,1,0,2),(,0,2,1),(,2,0,3):}]` is a root of polynomial `x^(3)-6x^(2)+7x+k=0` then the value of k is

A

2

B

4

C

`-2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the polynomial \( x^3 - 6x^2 + 7x + k = 0 \) given that the matrix \( A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \) is a root, we will follow these steps: ### Step 1: Define the polynomial function Let \( f(x) = x^3 - 6x^2 + 7x + k \). ### Step 2: Substitute the matrix \( A \) into the polynomial We need to evaluate \( f(A) \): \[ f(A) = A^3 - 6A^2 + 7A + kI_3 \] where \( I_3 \) is the \( 3 \times 3 \) identity matrix. ### Step 3: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the elements: - First row: - \( 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2 = 1 + 0 + 4 = 5 \) - \( 1 \cdot 0 + 0 \cdot 2 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 1 \cdot 2 + 0 \cdot 1 + 2 \cdot 3 = 2 + 0 + 6 = 8 \) - Second row: - \( 0 \cdot 1 + 2 \cdot 0 + 1 \cdot 2 = 0 + 0 + 2 = 2 \) - \( 0 \cdot 0 + 2 \cdot 2 + 1 \cdot 0 = 0 + 4 + 0 = 4 \) - \( 0 \cdot 2 + 2 \cdot 1 + 1 \cdot 3 = 0 + 2 + 3 = 5 \) - Third row: - \( 2 \cdot 1 + 0 \cdot 0 + 3 \cdot 2 = 2 + 0 + 6 = 8 \) - \( 2 \cdot 0 + 0 \cdot 2 + 3 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 2 \cdot 2 + 0 \cdot 1 + 3 \cdot 3 = 4 + 0 + 9 = 13 \) Thus, \[ A^2 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \] ### Step 4: Calculate \( A^3 \) Now, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \] Calculating the elements: - First row: - \( 5 \cdot 1 + 0 \cdot 0 + 8 \cdot 2 = 5 + 0 + 16 = 21 \) - \( 5 \cdot 0 + 0 \cdot 2 + 8 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 5 \cdot 2 + 0 \cdot 1 + 8 \cdot 3 = 10 + 0 + 24 = 34 \) - Second row: - \( 2 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 = 2 + 0 + 10 = 12 \) - \( 2 \cdot 0 + 4 \cdot 2 + 5 \cdot 0 = 0 + 8 + 0 = 8 \) - \( 2 \cdot 2 + 4 \cdot 1 + 5 \cdot 3 = 4 + 4 + 15 = 23 \) - Third row: - \( 8 \cdot 1 + 0 \cdot 0 + 13 \cdot 2 = 8 + 0 + 26 = 34 \) - \( 8 \cdot 0 + 0 \cdot 2 + 13 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 8 \cdot 2 + 0 \cdot 1 + 13 \cdot 3 = 16 + 0 + 39 = 55 \) Thus, \[ A^3 = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} \] ### Step 5: Substitute \( A \), \( A^2 \), and \( A^3 \) into \( f(A) \) Now we will substitute \( A \), \( A^2 \), and \( A^3 \) into the polynomial: \[ f(A) = A^3 - 6A^2 + 7A + kI_3 \] Substituting the values: \[ f(A) = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} - 6 \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} + 7 \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} + k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating \( -6A^2 \): \[ -6A^2 = -6 \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} = \begin{pmatrix} -30 & 0 & -48 \\ -12 & -24 & -30 \\ -48 & 0 & -78 \end{pmatrix} \] Calculating \( 7A \): \[ 7A = 7 \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} \] Now, adding these matrices together: \[ f(A) = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} + \begin{pmatrix} -30 & 0 & -48 \\ -12 & -24 & -30 \\ -48 & 0 & -78 \end{pmatrix} + \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} + k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating the sum: \[ = \begin{pmatrix} 21 - 30 + 7 & 0 + 0 + 0 & 34 - 48 + 14 \\ 12 - 12 + 0 & 8 - 24 + 14 & 23 - 30 + 7 \\ 34 - 48 + 14 & 0 + 0 + 0 & 55 - 78 + 21 \end{pmatrix} + k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This simplifies to: \[ = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} + k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 6: Set \( f(A) = 0 \) For \( A \) to be a root, we need \( f(A) = 0 \): \[ \begin{pmatrix} -2 + k & 0 & 0 \\ 0 & -2 + k & 0 \\ 0 & 0 & -2 + k \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] This gives us the equation: \[ -2 + k = 0 \] Thus, solving for \( k \): \[ k = 2 \] ### Final Answer The value of \( k \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-C|10 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If x=4/3 is a root of the polynomial f(x)=6x^3-11 x^2+k x-20 , find the value of k

If x=4/3 is a root of the polynomial f(x)=6x^3-11 x^2+k x-20 , find the value of k

Show that x=1 is a root of the polynomial 2x^3-3x^2+7x-6

Show that x=1 is a root of the polynomial 2x^3-3x^2+7x-6

If int_0^1(3x^2+2x+k)dx=0, find the value of k

If the roots of the equation x^(2)+8x-(2k+3)=0 differ by 2, then the value of k is

If A=[1 0 2 0 2 1 2 0 3] , then show that A is a root of the polynomial f(x)=x^3-6x^2+7x+2 .

If int_0^1(3x^2+2x+k)dx=0, find the value of kdot

If int_0^1(3x^2+2x+k)dx=0, find the value of kdot

If -1 +i is a root of x^4 + 4x^3 + 5x^2 + k=0 then its real roots are

RESONANCE ENGLISH-MATRICES & DETERMINANT-SECTION-D
  1. For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0....

    Text Solution

    |

  2. Find the total number of possible square matrix. A order 3 with all re...

    Text Solution

    |

  3. If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

    Text Solution

    |

  4. Apply Cramer's rule to solve the simultaneous equations. (i)x+2y+3z...

    Text Solution

    |

  5. Solve using Cramer's rule:(4)/(x+5)+(3)/(y+7)=-1&(6)/(x+5)-(6)/(y+7)=-...

    Text Solution

    |

  6. Find those values of c for which the equations: 2x+3y=3,(c+ 2)x + (c +...

    Text Solution

    |

  7. Solve the following systems of liner a equations by cramer rule . (i...

    Text Solution

    |

  8. Determine for that values of lambda and mu the following system of eq...

    Text Solution

    |

  9. Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1...

    Text Solution

    |

  10. Compute A^(-1), if A=[{:(,3,-2,3),(,2,1,-1),(,4,-3,2):}]. Hence sove t...

    Text Solution

    |

  11. Show that following system of linear equations is inconsistent: 4x-...

    Text Solution

    |

  12. If A=[{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x...

    Text Solution

    |

  13. If A=[[a,b],[c,d]] (where b c!=0 ) satisfies the equations x^2+k=0,t h...

    Text Solution

    |

  14. If the system of equations x + 2y + 3z = 4, x+ py+ 2z = 3, x+ 4y +u z ...

    Text Solution

    |

  15. Let lambda and alpha be real. Then the numbers of intergral values ...

    Text Solution

    |

  16. Let [{:(,a,o,b),(,1,e,1),(,c,o,d):}]=[{:(,0),(,0),(,0):}] where a,b,c,...

    Text Solution

    |

  17. a ,b ,c are distinct real numbers not equal to one. If a x+y+z=0,x+b y...

    Text Solution

    |