Home
Class 12
MATHS
((2007)!)/((2007)n) is an integer & n i...

`((2007)!)/((2007)n)` is an integer & `n in N`, then find maximum value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum value of \( n \) such that \(\frac{(2007)!}{(2000)^n}\) is an integer, we need to analyze the prime factorization of \( 2000 \) and how many times these prime factors appear in \( 2007! \). ### Step-by-Step Solution: 1. **Factorization of 2000**: \[ 2000 = 2^4 \times 5^3 \] This means that \( 2000^n = (2^4 \times 5^3)^n = 2^{4n} \times 5^{3n} \). 2. **Finding the number of factors of 2 in \( 2007! \)**: We use the formula to find the number of times a prime \( p \) divides \( n! \): \[ \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor \] For \( p = 2 \): \[ \left\lfloor \frac{2007}{2} \right\rfloor + \left\lfloor \frac{2007}{4} \right\rfloor + \left\lfloor \frac{2007}{8} \right\rfloor + \left\lfloor \frac{2007}{16} \right\rfloor + \left\lfloor \frac{2007}{32} \right\rfloor + \left\lfloor \frac{2007}{64} \right\rfloor + \left\lfloor \frac{2007}{128} \right\rfloor + \left\lfloor \frac{2007}{256} \right\rfloor + \left\lfloor \frac{2007}{512} \right\rfloor + \left\lfloor \frac{2007}{1024} \right\rfloor \] Calculating each term: \[ \left\lfloor \frac{2007}{2} \right\rfloor = 1003, \quad \left\lfloor \frac{2007}{4} \right\rfloor = 501, \quad \left\lfloor \frac{2007}{8} \right\rfloor = 250 \] \[ \left\lfloor \frac{2007}{16} \right\rfloor = 125, \quad \left\lfloor \frac{2007}{32} \right\rfloor = 62, \quad \left\lfloor \frac{2007}{64} \right\rfloor = 31 \] \[ \left\lfloor \frac{2007}{128} \right\rfloor = 15, \quad \left\lfloor \frac{2007}{256} \right\rfloor = 7, \quad \left\lfloor \frac{2007}{512} \right\rfloor = 3, \quad \left\lfloor \frac{2007}{1024} \right\rfloor = 1 \] Adding these values: \[ 1003 + 501 + 250 + 125 + 62 + 31 + 15 + 7 + 3 + 1 = 1998 \] Thus, the total number of factors of 2 in \( 2007! \) is \( 1998 \). 3. **Finding the number of factors of 5 in \( 2007! \)**: For \( p = 5 \): \[ \left\lfloor \frac{2007}{5} \right\rfloor + \left\lfloor \frac{2007}{25} \right\rfloor + \left\lfloor \frac{2007}{125} \right\rfloor + \left\lfloor \frac{2007}{625} \right\rfloor \] Calculating each term: \[ \left\lfloor \frac{2007}{5} \right\rfloor = 401, \quad \left\lfloor \frac{2007}{25} \right\rfloor = 80, \quad \left\lfloor \frac{2007}{125} \right\rfloor = 16, \quad \left\lfloor \frac{2007}{625} \right\rfloor = 3 \] Adding these values: \[ 401 + 80 + 16 + 3 = 500 \] Thus, the total number of factors of 5 in \( 2007! \) is \( 500 \). 4. **Setting up the inequalities**: We need: \[ 4n \leq 1998 \quad \text{and} \quad 3n \leq 500 \] From \( 4n \leq 1998 \): \[ n \leq \frac{1998}{4} = 499.5 \quad \Rightarrow \quad n \leq 499 \] From \( 3n \leq 500 \): \[ n \leq \frac{500}{3} \approx 166.67 \quad \Rightarrow \quad n \leq 166 \] 5. **Conclusion**: The maximum value of \( n \) that satisfies both inequalities is: \[ n = 166 \] ### Final Answer: The maximum value of \( n \) such that \(\frac{(2007)!}{(2000)^n}\) is an integer is \( \boxed{166} \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -1 (PART - I)|26 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -1 (PART - II)|5 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos

Similar Questions

Explore conceptually related problems

find the value of P(n,n-1)

If P(n ,4)=20xxP(n ,2), then find the value of n

If cot^(-1)(n/(pi))>(pi)/6, n in N , then the maximum value of n is :

If cot^(-1)(n/(pi))>(pi)/6, n in N , then the maximum value of n is :

If n is an integer between 0 and 21, then the minimum value of n!(21-n)! is attained for n= 1 b. 10 c. 12 d. 20

If n is any integer, then the value of (-sqrt(-1))^(4n+3)

If (a^n+b^n)/(a^(n-1)+b^(n-1)) is the A.M. between a and b, then find the value of n.

If (a^n+b^n)/(a^(n-1)+b^(n-1)) is the A.M. between a and b, then find the value of n.

In the interhalogen compound AB_(n) , what is the maximum value of n ?

If m,n in N and m=(n^2-n-35)/(n-4) , then find the value of m.