Home
Class 12
MATHS
Let a (j) = (7)/(4) ((2)/(3)) ^( j -1)...

Let ` a _(j) = (7)/(4) ((2)/(3)) ^( j -1), j in N`. lf `b _(j) = a _(j) ^(2) + a _(j),` sum of the infinite sereies formed by `b _(j) 's` is `(10 + alpha )` where `[ (1)/( alpha ) ]` is equal to ([] represent greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: 1. **Define the sequence \( a_j \)**: \[ a_j = \frac{7}{4} \left( \frac{2}{3} \right)^{j - 1}, \quad j \in \mathbb{N} \] 2. **Define the sequence \( b_j \)**: \[ b_j = a_j^2 + a_j \] 3. **Calculate \( a_j^2 \)**: \[ a_j^2 = \left( \frac{7}{4} \left( \frac{2}{3} \right)^{j - 1} \right)^2 = \frac{49}{16} \left( \frac{2}{3} \right)^{2(j - 1)} = \frac{49}{16} \left( \frac{2}{3} \right)^{2j - 2} \] 4. **Combine \( b_j \)**: \[ b_j = a_j^2 + a_j = \frac{49}{16} \left( \frac{2}{3} \right)^{2j - 2} + \frac{7}{4} \left( \frac{2}{3} \right)^{j - 1} \] 5. **Factor out common terms**: \[ b_j = \left( \frac{2}{3} \right)^{j - 1} \left( \frac{49}{16} \left( \frac{2}{3} \right)^{j - 1} + \frac{7}{4} \right) \] 6. **Rewrite \( b_j \)**: \[ b_j = \left( \frac{2}{3} \right)^{j - 1} \left( \frac{49}{16} \left( \frac{2}{3} \right)^{j - 1} + \frac{28}{16} \right) = \left( \frac{2}{3} \right)^{j - 1} \left( \frac{49}{16} \left( \frac{2}{3} \right)^{j - 1} + \frac{28}{16} \right) \] 7. **Sum the infinite series \( \sum_{j=1}^{\infty} b_j \)**: \[ S = \sum_{j=1}^{\infty} b_j = \sum_{j=1}^{\infty} \left( \frac{2}{3} \right)^{j - 1} \left( \frac{49}{16} \left( \frac{2}{3} \right)^{j - 1} + \frac{28}{16} \right) \] 8. **Separate the sums**: \[ S = \sum_{j=1}^{\infty} \left( \frac{49}{16} \left( \frac{2}{3} \right)^{2(j - 1)} \right) + \sum_{j=1}^{\infty} \left( \frac{28}{16} \left( \frac{2}{3} \right)^{j - 1} \right) \] 9. **Use the formula for the sum of a geometric series**: - For the first sum: \[ \sum_{j=1}^{\infty} \left( \frac{49}{16} \left( \frac{2}{3} \right)^{2(j - 1)} \right) = \frac{\frac{49}{16}}{1 - \left( \frac{2}{3} \right)^2} = \frac{\frac{49}{16}}{1 - \frac{4}{9}} = \frac{\frac{49}{16}}{\frac{5}{9}} = \frac{49 \cdot 9}{16 \cdot 5} = \frac{441}{80} \] - For the second sum: \[ \sum_{j=1}^{\infty} \left( \frac{28}{16} \left( \frac{2}{3} \right)^{j - 1} \right) = \frac{\frac{28}{16}}{1 - \frac{2}{3}} = \frac{\frac{28}{16}}{\frac{1}{3}} = \frac{28 \cdot 3}{16} = \frac{84}{16} = \frac{21}{4} \] 10. **Combine the results**: \[ S = \frac{441}{80} + \frac{21}{4} = \frac{441}{80} + \frac{420}{80} = \frac{861}{80} \] 11. **Set the sum equal to \( 10 + \alpha \)**: \[ 10 + \alpha = \frac{861}{80} \implies \alpha = \frac{861}{80} - 10 = \frac{861 - 800}{80} = \frac{61}{80} \] 12. **Find \( \frac{1}{\alpha} \)**: \[ \frac{1}{\alpha} = \frac{80}{61} \] 13. **Calculate the greatest integer function**: \[ \lfloor \frac{80}{61} \rfloor = 1 \] ### Final Answer: The answer is \( \lfloor \frac{1}{\alpha} \rfloor = 1 \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -1 PART -II RMO|1 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART -I PREVIOUS ASKED QUESTION FOR PRE RMO)|15 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise SELF PRACTICE PROBLEMS |23 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos

Similar Questions

Explore conceptually related problems

1 J/s equivalent to n erg/s where n is

sum_(j=0)^(oo)(-3)^(-j)

The sum sum_(0 leq i)sum_(leq j leq 10) (10C_j)(jC_i) is equal to

If root(3)(5j-7)=-(1)/(2) , what is the value of j ?

For j =0,1,2…n let S _(j) be the area of region bounded by the x-axis and the curve ye ^(x)=sin x for j pi le x le (j +1) pi The value of sum _(j =0)^(oo) S_(j) equals to :

If matrix A = [a_(i j)]_(2 xx 2) , where a_(i j) = {("1 if",i ne j),("0 if",i = j):} then A^(2) is equal to

If (2)/(3)j-(1)/(4)k=(5)/(2) , what is the value of 8j-3k ?

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

Given A = [a_(y)]_(2 xx 2) "where " a_(y) = {{:((|-3i + j|)/(2) if i ne j ),((i + j)^(2) If i = j ):} " then " a_(11) + a_(21) =

RESONANCE ENGLISH-SEQUENCE & SERIES -EXERCISE -1 PART -I RMO
  1. The sum of three numbers in A.P. is 27, and their product is 504, find...

    Text Solution

    |

  2. Three friends whose ages form a G.P. divide a certain sum of money in ...

    Text Solution

    |

  3. The roots of the equation x ^(5) - 40 x ^(4) + ax ^(3) + bx ^(2) + cx ...

    Text Solution

    |

  4. Let T(n) denotes the n ^(th) term of a G.P. with common ratio 2 and (l...

    Text Solution

    |

  5. If a, b, c are in A.P. and if (b-c)x^(2)++(c-a)x+a-b=0and2(c+a)x^(2)+(...

    Text Solution

    |

  6. Along a road lies an odd number of stones placed at intervals of 10 m....

    Text Solution

    |

  7. a,b,c are positive real numbers forming a. G.P. If ax ^(2) + 2 bx + c=...

    Text Solution

    |

  8. Determine all pairs (a,b) of real numbers such that 10, a,b,ab are in ...

    Text Solution

    |

  9. If sqrt(1+1/(1^2)+1/(2^2))+sqrt(1+1/(2^2)+1/(3^2))+sqrt(1+1/(3^2)+1/(4...

    Text Solution

    |

  10. If n is any positive integer, then find the number whose square is und...

    Text Solution

    |

  11. Find the sum of infinite terms of the series : (3)/(2.4) + (5)/(1.4.6)...

    Text Solution

    |

  12. If S (1), S (2) , S (3)……., S (2n) are the sums of infinite geometric ...

    Text Solution

    |

  13. Find the nth terms and the sum to n term of the series : 1^(2)+(1^(2...

    Text Solution

    |

  14. Let a (j) = (7)/(4) ((2)/(3)) ^( j -1), j in N. lf b (j) = a (j) ^(2...

    Text Solution

    |

  15. The sequence 9, 18, 27, 36, 45, 54,….. consists of successive mutiple ...

    Text Solution

    |

  16. As show in the figure , the five circles are tangent to one another co...

    Text Solution

    |

  17. The arithmaeic mean of the nine numbers in the given set {9,99,999,….....

    Text Solution

    |

  18. Let a sequence whose n^(th) term is {a(n)} be defined as a(1) = 1/2 ...

    Text Solution

    |

  19. If x = (1 ^(2))/(1) =+ (2 ^(2))/( 3) + (3 ^(2))/( 5) +.....+ (1001 ^(2...

    Text Solution

    |

  20. Let K is a positive Integer such that 36 +K , 300 + K , 596 + K are th...

    Text Solution

    |