Home
Class 12
MATHS
Evaluate : intdx/sqrt((x-1)(2-x)) by the...

Evaluate : `intdx/sqrt((x-1)(2-x))` by the substitution `x=1+sin^2theta`. Hence, find the value of `int_1^2dx/sqrt((x-1)(2-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \frac{dx}{\sqrt{(x-1)(2-x)}} \) using the substitution \( x = 1 + \sin^2 \theta \), we will follow these steps: ### Step 1: Substitution Let \( x = 1 + \sin^2 \theta \). ### Step 2: Differentiate Differentiating both sides, we get: \[ dx = 2 \sin \theta \cos \theta \, d\theta = \sin(2\theta) \, d\theta \] ### Step 3: Substitute in the Integral Now, substitute \( x \) and \( dx \) into the integral: \[ I = \int \frac{dx}{\sqrt{(x-1)(2-x)}} = \int \frac{2 \sin \theta \cos \theta \, d\theta}{\sqrt{(1 + \sin^2 \theta - 1)(2 - (1 + \sin^2 \theta))}} \] ### Step 4: Simplify the Expression Now simplify the expression inside the square root: \[ (x-1) = \sin^2 \theta \] \[ (2-x) = 1 - \sin^2 \theta = \cos^2 \theta \] Thus, we have: \[ \sqrt{(x-1)(2-x)} = \sqrt{\sin^2 \theta \cos^2 \theta} = \sin \theta \cos \theta \] ### Step 5: Substitute Back Substituting this back into the integral: \[ I = \int \frac{2 \sin \theta \cos \theta \, d\theta}{\sin \theta \cos \theta} = \int 2 \, d\theta \] ### Step 6: Integrate Now we can integrate: \[ I = 2\theta + C \] ### Step 7: Back Substitute Since \( \sin^2 \theta = x - 1 \), we have: \[ \theta = \sin^{-1}(\sqrt{x - 1}) \] Thus, \[ I = 2 \sin^{-1}(\sqrt{x - 1}) + C \] ### Step 8: Evaluate the Definite Integral Now, we need to evaluate the definite integral from 1 to 2: \[ \int_1^2 \frac{dx}{\sqrt{(x-1)(2-x)}} = \left[ 2 \sin^{-1}(\sqrt{x - 1}) \right]_1^2 \] ### Step 9: Calculate the Limits Calculating the upper limit: \[ \text{At } x = 2: \quad 2 \sin^{-1}(\sqrt{2 - 1}) = 2 \sin^{-1}(1) = 2 \cdot \frac{\pi}{2} = \pi \] Calculating the lower limit: \[ \text{At } x = 1: \quad 2 \sin^{-1}(\sqrt{1 - 1}) = 2 \sin^{-1}(0) = 0 \] ### Step 10: Final Result Thus, the value of the definite integral is: \[ \int_1^2 \frac{dx}{\sqrt{(x-1)(2-x)}} = \pi - 0 = \pi \] ### Summary The final answer is: \[ \int_1^2 \frac{dx}{\sqrt{(x-1)(2-x)}} = \pi \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intdx/sqrt ((x-1)(x-2))

Evaluate: int1/(sqrt((x-1)(x-2)))dx

Evaluate: int1/(sqrt((x-1)(x-2)))dx

Evaluate intdx/sqrt (1-2x-x^2)

Evaluate: int1/sqrt((2-x)^2+1)dx

Evaluate: int1/(x+sqrt(x^2-x+1))dx

Evaluate: int1/(sqrt(5x^2-2x))\ dx

Evaluate: int(x-1)sqrt (x^2-2x)dx

Evaluate: int1/((x-1)sqrt(2x+3))\ dx

Evaluate: int1/(sqrt(1+sin2x))\ dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. Evaluate : intdx/sqrt((x-1)(2-x)) by the substitution x=1+sin^2theta. ...

    Text Solution

    |

  2. The integral int(pi//4)^(pi//2)(2 "cosec "x )^(17) dx is equal to

    Text Solution

    |

  3. If for a real number y ,[y] is the greatest integral function less, th...

    Text Solution

    |

  4. Let f(x) =x -[x] , for every real number x (where, [x] is integral par...

    Text Solution

    |

  5. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  6. Let f be a positive function. Let I1=int(1-k)^k xf([x(1-x)]dx , I2=i...

    Text Solution

    |

  7. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  8. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  9. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  10. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  11. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  12. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |

  13. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  14. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  15. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  16. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  17. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  18. int(1)^(e^(37))(pisin(pilogx))/(x)dx equals to.

    Text Solution

    |

  19. Prove that: int0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx

    Text Solution

    |

  20. The value of int2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dxi s

    Text Solution

    |

  21. The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equ...

    Text Solution

    |