Home
Class 12
MATHS
int(0)^(pi//6) sqrt(1-sin 2x) dx...

`int_(0)^(pi//6) sqrt(1-sin 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{6}} \sqrt{1 - \sin 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand Using the double angle identity for sine, we know that: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the integrand: \[ 1 - \sin 2x = 1 - 2 \sin x \cos x \] We can also use the identity \( \cos^2 x + \sin^2 x = 1 \) to express this in a different form: \[ 1 - 2 \sin x \cos x = (\sin x - \cos x)^2 \] So, we have: \[ \sqrt{1 - \sin 2x} = \sqrt{(\sin x - \cos x)^2} = |\sin x - \cos x| \] ### Step 2: Determine the sign of the expression For \( x \) in the interval \( [0, \frac{\pi}{6}] \): - At \( x = 0 \), \( \sin 0 - \cos 0 = 0 - 1 = -1 \) - At \( x = \frac{\pi}{6} \), \( \sin \frac{\pi}{6} - \cos \frac{\pi}{6} = \frac{1}{2} - \frac{\sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2} \) which is negative. Thus, \( \sin x - \cos x \) is negative in the interval \( [0, \frac{\pi}{6}] \). Therefore: \[ |\sin x - \cos x| = -(\sin x - \cos x) = \cos x - \sin x \] ### Step 3: Rewrite the integral Now we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{6}} \sqrt{1 - \sin 2x} \, dx = \int_{0}^{\frac{\pi}{6}} (\cos x - \sin x) \, dx \] ### Step 4: Integrate the expression Now we can integrate: \[ \int (\cos x - \sin x) \, dx = \int \cos x \, dx - \int \sin x \, dx = \sin x + \cos x + C \] ### Step 5: Apply the limits Now we evaluate the definite integral from \( 0 \) to \( \frac{\pi}{6} \): \[ \left[ \sin x + \cos x \right]_{0}^{\frac{\pi}{6}} = \left( \sin \frac{\pi}{6} + \cos \frac{\pi}{6} \right) - \left( \sin 0 + \cos 0 \right) \] Calculating the values: - \( \sin \frac{\pi}{6} = \frac{1}{2} \) - \( \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \) - \( \sin 0 = 0 \) - \( \cos 0 = 1 \) Thus: \[ \left( \frac{1}{2} + \frac{\sqrt{3}}{2} \right) - (0 + 1) = \left( \frac{1 + \sqrt{3}}{2} \right) - 1 = \frac{1 + \sqrt{3} - 2}{2} = \frac{\sqrt{3} - 1}{2} \] ### Final Answer The value of the integral is: \[ \int_{0}^{\frac{\pi}{6}} \sqrt{1 - \sin 2x} \, dx = \frac{\sqrt{3} - 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2)sqrt( 1- sin 2 x ) dx is equal to

Evaluate: int_0^(pi//4)sqrt(1-sin^2x)dx

Evaluate: int_(pi//4)^(pi//2)sqrt(1-sin2x)dx

Evaluate: int_0^(pi//4)sqrt(1+sin2x)dx (ii) int_0^(pi//4)sqrt(1-sin2x)dx

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

Prove that : int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. int(0)^(pi//6) sqrt(1-sin 2x) dx

    Text Solution

    |

  2. The integral int(pi//4)^(pi//2)(2 "cosec "x )^(17) dx is equal to

    Text Solution

    |

  3. If for a real number y ,[y] is the greatest integral function less, th...

    Text Solution

    |

  4. Let f(x) =x -[x] , for every real number x (where, [x] is integral par...

    Text Solution

    |

  5. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  6. Let f be a positive function. Let I1=int(1-k)^k xf([x(1-x)]dx , I2=i...

    Text Solution

    |

  7. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  8. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  9. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  10. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  11. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  12. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |

  13. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  14. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  15. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  16. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  17. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  18. int(1)^(e^(37))(pisin(pilogx))/(x)dx equals to.

    Text Solution

    |

  19. Prove that: int0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx

    Text Solution

    |

  20. The value of int2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dxi s

    Text Solution

    |

  21. The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equ...

    Text Solution

    |