Home
Class 12
MATHS
Draw a rough sketch of the region {(x,y)...

Draw a rough sketch of the region `{(x,y) : y^(2)le 6` a x and `x^(2)+y^(2)le 16 a^(2)}`. Also, find the area of the region sketched using method of integration.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first sketch the region defined by the inequalities and then calculate the area using integration. ### Step 1: Understand the equations We have two inequalities: 1. \( y^2 \leq 6x \) (which represents a parabola) 2. \( x^2 + y^2 \leq 16a^2 \) (which represents a circle) ### Step 2: Sketch the curves 1. **Parabola**: The equation \( y^2 = 6x \) can be rewritten as \( y = \pm \sqrt{6x} \). This parabola opens to the right and intersects the x-axis at the origin (0,0). 2. **Circle**: The equation \( x^2 + y^2 = 16a^2 \) represents a circle with a radius of \( 4a \) centered at the origin (0,0). ### Step 3: Find points of intersection To find the points where the parabola intersects the circle, we substitute \( y^2 = 6x \) into the circle's equation: \[ x^2 + 6x = 16a^2 \] This simplifies to: \[ x^2 + 6x - 16a^2 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 6, c = -16a^2 \): \[ x = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot (-16a^2)}}{2 \cdot 1} \] \[ x = \frac{-6 \pm \sqrt{36 + 64a^2}}{2} \] \[ x = \frac{-6 \pm \sqrt{36 + 64a^2}}{2} \] ### Step 4: Calculate the area The area between the curves can be found by integrating the difference of the two functions from the left intersection point to the right intersection point. 1. **Area under the parabola** from \( x = 0 \) to \( x = 2a \): \[ \text{Area}_\text{parabola} = \int_0^{2a} \sqrt{6x} \, dx \] 2. **Area under the circle** from \( x = 2a \) to \( x = 4a \): \[ \text{Area}_\text{circle} = \int_{2a}^{4a} \sqrt{16a^2 - x^2} \, dx \] ### Step 5: Evaluate the integrals 1. **Integrating the parabola**: \[ \int_0^{2a} \sqrt{6x} \, dx = \int_0^{2a} \sqrt{6} \cdot x^{1/2} \, dx = \sqrt{6} \cdot \left[ \frac{2}{3} x^{3/2} \right]_0^{2a} = \sqrt{6} \cdot \frac{2}{3} (2a)^{3/2} \] 2. **Integrating the circle**: Using the formula for the area of a circle segment: \[ \int_{2a}^{4a} \sqrt{16a^2 - x^2} \, dx = \text{Area of segment} = \frac{1}{2} \left( 16a^2 \cdot \theta - 16a^2 \cdot \sin(\theta) \right) \] Where \( \theta \) is the angle corresponding to the arc. ### Final Area Calculation Combining both areas gives the total area of the region bounded by the parabola and the circle.
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Draw a rough sketch of the region {(x,y): y^2 le 3x,3x^2 + 3y^2 le16 } and find the area enclosed by the region using the method of integration

Draw the rough sketch of the curve y=x^(4)-x^(2) .

Draw a rough sketch of the region {(x , y): y^2lt=5x ,\ 5x^2+5y^2lt=36} and find the area enclosed by the region using method of integration

The area of the region R={(x,y)//x^(2)le y le x} is

The area of the region R={(x,y):|x| le|y| and x^2+y^2le1} is

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Draw a rough sketch of the curve y= (x-1)^2(x-2)(x-3)^3

Find the area of the region {(x, y) : y^2 =6ax and x^2+y^2=16a^2} using method of integration .

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Advanced (Archive)
  1. Draw a rough sketch of the region {(x,y) : y^(2)le 6 a x and x^(2)+y^(...

    Text Solution

    |

  2. The integral int(pi//4)^(pi//2)(2 "cosec "x )^(17) dx is equal to

    Text Solution

    |

  3. If for a real number y ,[y] is the greatest integral function less, th...

    Text Solution

    |

  4. Let f(x) =x -[x] , for every real number x (where, [x] is integral par...

    Text Solution

    |

  5. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  6. Let f be a positive function. Let I1=int(1-k)^k xf([x(1-x)]dx , I2=i...

    Text Solution

    |

  7. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  8. If f(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int0^1f(x)dx=(2A...

    Text Solution

    |

  9. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  10. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  11. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  12. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |

  13. Suppose we define integral using the following formula int(a)^(b)f(x)d...

    Text Solution

    |

  14. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  15. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  16. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  17. Let d/(dx)F(x)=(e^(sinx))/x . x lt0. If int(1)^(4)(2e^(sinx^(2)))/xdx=...

    Text Solution

    |

  18. int(1)^(e^(37))(pisin(pilogx))/(x)dx equals to.

    Text Solution

    |

  19. Prove that: int0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx

    Text Solution

    |

  20. The value of int2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dxi s

    Text Solution

    |

  21. The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equ...

    Text Solution

    |