Home
Class 12
MATHS
Given fuction,{(x^(2), "for" 0 le x lt1)...

Given fuction,`{(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):}`
Evaluate `int_(0)^(2) f(x) d x `.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{2} f(x) \, dx \) for the given piecewise function \[ f(x) = \begin{cases} x^2 & \text{for } 0 \leq x < 1 \\ \sqrt{x} & \text{for } 1 \leq x \leq 2 \end{cases} \] we will break the integral into two parts based on the definition of \( f(x) \). ### Step 1: Break the integral into two parts We can express the integral from 0 to 2 as the sum of two integrals: \[ \int_{0}^{2} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 2: Evaluate the first integral For \( 0 \leq x < 1 \), we have \( f(x) = x^2 \). Therefore, \[ \int_{0}^{1} f(x) \, dx = \int_{0}^{1} x^2 \, dx \] Using the power rule for integration, we find: \[ \int x^2 \, dx = \frac{x^{3}}{3} + C \] Now, we evaluate this from 0 to 1: \[ \int_{0}^{1} x^2 \, dx = \left[ \frac{x^{3}}{3} \right]_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3} = \frac{1}{3} \] ### Step 3: Evaluate the second integral For \( 1 \leq x \leq 2 \), we have \( f(x) = \sqrt{x} \). Therefore, \[ \int_{1}^{2} f(x) \, dx = \int_{1}^{2} \sqrt{x} \, dx \] We know that \( \sqrt{x} = x^{1/2} \), so we can integrate: \[ \int \sqrt{x} \, dx = \int x^{1/2} \, dx = \frac{x^{3/2}}{3/2} + C = \frac{2}{3} x^{3/2} + C \] Now, we evaluate this from 1 to 2: \[ \int_{1}^{2} \sqrt{x} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_{1}^{2} = \frac{2}{3} (2^{3/2}) - \frac{2}{3} (1^{3/2}) = \frac{2}{3} (2\sqrt{2}) - \frac{2}{3} (1) \] Calculating further: \[ = \frac{2 \cdot 2\sqrt{2}}{3} - \frac{2}{3} = \frac{4\sqrt{2}}{3} - \frac{2}{3} \] ### Step 4: Combine the results Now, we combine the results of both integrals: \[ \int_{0}^{2} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx = \frac{1}{3} + \left( \frac{4\sqrt{2}}{3} - \frac{2}{3} \right) \] This simplifies to: \[ = \frac{1}{3} + \frac{4\sqrt{2}}{3} - \frac{2}{3} = \frac{4\sqrt{2} - 1}{3} \] Thus, the final answer is: \[ \int_{0}^{2} f(x) \, dx = \frac{4\sqrt{2} - 1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

"If "f(x) ={underset(x^(2)+1.2 le x le 3)(2x+1.1 le x le 2), then evaluate int_(1)^(3) f(x) dx.

Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0),(x-1 " for " 0 le x le 2):} , then {x in [-2,2]: x le 0 and f(|x|)=x}=

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. int(0)^(log 2)(e^(x))/(1+e^(x))dx=

    Text Solution

    |

  2. Given fuction,{(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} ...

    Text Solution

    |

  3. Evaluate the integral I=int(0)^(2)|x-1|dx.

    Text Solution

    |

  4. Evaluate the following integral: int0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ ...

    Text Solution

    |

  5. Show that int(0)^(pi)xf(sinx)dx=(pi)/2 int(0)^(pi)"fr"(sinx)dx.

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  8. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  9. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  10. Evaluate int(-2)^(2)(d x)/(4+ x^(2))directly as well as by

    Text Solution

    |

  11. If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x)dx = l(2) then :

    Text Solution

    |

  12. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  13. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  14. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  15. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  16. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  17. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  18. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  19. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  20. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |