Home
Class 12
MATHS
Evaluate the integral I=int(0)^(2)|x-1|d...

Evaluate the integral `I=int_(0)^(2)|x-1|dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{2} |x - 1| \, dx \), we first need to analyze the absolute value function \( |x - 1| \). ### Step 1: Determine the intervals for the absolute value The expression \( |x - 1| \) changes at the point where \( x = 1 \). Therefore, we will split the integral into two parts: - From \( 0 \) to \( 1 \), where \( x - 1 < 0 \) and thus \( |x - 1| = -(x - 1) = 1 - x \). - From \( 1 \) to \( 2 \), where \( x - 1 \geq 0 \) and thus \( |x - 1| = x - 1 \). ### Step 2: Rewrite the integral We can rewrite the integral as: \[ I = \int_{0}^{1} (1 - x) \, dx + \int_{1}^{2} (x - 1) \, dx \] ### Step 3: Evaluate the first integral Now we evaluate the first integral: \[ \int_{0}^{1} (1 - x) \, dx \] Calculating this: \[ = \left[ x - \frac{x^2}{2} \right]_{0}^{1} = \left( 1 - \frac{1^2}{2} \right) - \left( 0 - 0 \right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 4: Evaluate the second integral Next, we evaluate the second integral: \[ \int_{1}^{2} (x - 1) \, dx \] Calculating this: \[ = \left[ \frac{x^2}{2} - x \right]_{1}^{2} = \left( \frac{2^2}{2} - 2 \right) - \left( \frac{1^2}{2} - 1 \right) = \left( 2 - 2 \right) - \left( \frac{1}{2} - 1 \right) = 0 - \left( \frac{1}{2} - 1 \right) = 0 + \frac{1}{2} = \frac{1}{2} \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ I = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Result Thus, the value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integral l=int_(0)^(2)|1-x| d x .

Evaluate the integrals int_0^1x/(x^2+1)dx

Evaluate the integrals int_0^2(dx)/(x+4-x^2)

Evaluate the following integral: int_0^4|x-1|dx

Evaluate the following integral: int_0^3|3x-1|dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Evaluate the integrals int_(-1)^(1) (1)/(x^(2)+2x+5)dx

Evaluate the integrals. (i) int 2x^(7) dx

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

Evaluate the following integral: int_(-1)^1|2x+1|dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. int(0)^(log 2)(e^(x))/(1+e^(x))dx=

    Text Solution

    |

  2. Given fuction,{(x^(2), "for" 0 le x lt1),(sqrtx, "for" 1le x le 2):} ...

    Text Solution

    |

  3. Evaluate the integral I=int(0)^(2)|x-1|dx.

    Text Solution

    |

  4. Evaluate the following integral: int0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ ...

    Text Solution

    |

  5. Show that int(0)^(pi)xf(sinx)dx=(pi)/2 int(0)^(pi)"fr"(sinx)dx.

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  8. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  9. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  10. Evaluate int(-2)^(2)(d x)/(4+ x^(2))directly as well as by

    Text Solution

    |

  11. If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x)dx = l(2) then :

    Text Solution

    |

  12. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  13. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  14. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  15. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  16. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  17. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  18. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  19. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  20. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |