Home
Class 12
MATHS
Evaluate the following definite integ...

Evaluate the following definite integral: `int_(-sqrt(2))^(sqrt(2))(2x^7+3x^6-10 x^5-7x^3-12 x^2+x+1)/(x^2+2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \[ I = \int_{-\sqrt{2}}^{\sqrt{2}} \frac{2x^7 + 3x^6 - 10x^5 - 7x^3 - 12x^2 + x + 1}{x^2 + 2} \, dx, \] we can start by analyzing the integrand. ### Step 1: Identify Odd and Even Functions The integrand can be split into two parts: the numerator and the denominator. 1. **Odd Functions**: - The terms \(2x^7\), \(-10x^5\), \(-7x^3\), and \(x\) are odd functions. - The entire numerator can be expressed as a sum of odd and even functions. The odd part will integrate to zero over the symmetric interval \([-a, a]\). 2. **Even Functions**: - The terms \(3x^6\), \(-12x^2\), and \(1\) are even functions. ### Step 2: Simplify the Integral Since the odd parts of the numerator will contribute zero to the integral, we can focus on the even part: \[ I = \int_{-\sqrt{2}}^{\sqrt{2}} \frac{3x^6 - 12x^2 + 1}{x^2 + 2} \, dx. \] ### Step 3: Use the Property of Even Functions For even functions, we can use the property: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx. \] Thus, we have: \[ I = 2 \int_{0}^{\sqrt{2}} \frac{3x^6 - 12x^2 + 1}{x^2 + 2} \, dx. \] ### Step 4: Simplify the Integrand Now we can simplify the integrand: \[ \frac{3x^6 - 12x^2 + 1}{x^2 + 2} = \frac{3x^6}{x^2 + 2} - \frac{12x^2}{x^2 + 2} + \frac{1}{x^2 + 2}. \] ### Step 5: Break Down the Integral We can break down the integral into three parts: \[ I = 2 \left( \int_{0}^{\sqrt{2}} \frac{3x^6}{x^2 + 2} \, dx - 12 \int_{0}^{\sqrt{2}} \frac{x^2}{x^2 + 2} \, dx + \int_{0}^{\sqrt{2}} \frac{1}{x^2 + 2} \, dx \right). \] ### Step 6: Evaluate Each Integral 1. **Integral of \( \frac{3x^6}{x^2 + 2} \)**: - Use polynomial long division or substitution to evaluate. 2. **Integral of \( \frac{x^2}{x^2 + 2} \)**: - This can be simplified to \(1 - \frac{2}{x^2 + 2}\). 3. **Integral of \( \frac{1}{x^2 + 2} \)**: - This can be evaluated using the formula for the integral of \( \frac{1}{x^2 + a^2} \). ### Step 7: Combine Results After evaluating each integral, combine the results to find \(I\). ### Final Result The final answer for the definite integral is: \[ I = \frac{5}{2\sqrt{2}} - \frac{16\sqrt{2}}{5}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(-sqrt(2))^(sqrt(2))(2x^7+3x^6-10 x^5-7x^3-12 x^2+x+1)/(x^2+2)dx

Evaluate the following definite integral: int_1^4(x^2+x)/(sqrt(2x+1))dx

Evaluate the following definite integral: int_2^3x/(x^2+1)dx

Evaluate the following definite integral: int_0^2 1/(sqrt(3+2x-x^2))dx

Evaluate the following definite integral: int_0^4 1/(sqrt(4x-x^2))dx

Evaluate the following definite integral: int_1^2(x+3)/(x(x+2))dx

Evaluate the following definite integral: int_(-1)^1 1/(x^2+2x+5)dx

Evaluate the following integrals. int (2x -3)/(sqrt(2x-1))dx

Evaluate the following integrals : int(x^(-1/3)+sqrt(x)+2)/(3sqrt(x)) dx

Evaluate the following integrals int (x-3)/sqrt(3-2x-x^(2))dx

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  2. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  3. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  4. Evaluate int(-2)^(2)(d x)/(4+ x^(2))directly as well as by

    Text Solution

    |

  5. If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x)dx = l(2) then :

    Text Solution

    |

  6. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  7. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  8. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  9. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  10. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  11. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  12. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  13. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  14. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  15. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  16. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  17. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  18. The value of int(0)^(2)[x^(2)-1]dx, where [x] denotes the greatest in...

    Text Solution

    |

  19. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  20. If af(x)+bf((1)/(x))=(1)/(x)-5,x ne 0,a ne b, then overset(2)underset(...

    Text Solution

    |