Home
Class 12
MATHS
If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x...

If `int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2)` then :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: 1. \( \int_{a}^{b} f(x) \, dx = l_1 \) 2. \( \int_{a}^{b} g(x) \, dx = l_2 \) We need to analyze the options provided based on these integrals. ### Step 1: Evaluate the integral of the sum of functions Using the property of integrals, we know that: \[ \int_{a}^{b} (f(x) + g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \] Substituting the known values: \[ \int_{a}^{b} (f(x) + g(x)) \, dx = l_1 + l_2 \] ### Step 2: Evaluate the integral of the product of functions For the product of two functions, we cannot directly express the integral as a simple product of the integrals. Therefore, we cannot say: \[ \int_{a}^{b} f(x) g(x) \, dx = l_1 l_2 \] This statement is generally false unless \( f(x) \) and \( g(x) \) are specific types of functions (like constants). ### Step 3: Evaluate the integral of the quotient of functions Similarly, for the quotient of two functions, we cannot express the integral in terms of the integrals of the individual functions: \[ \int_{a}^{b} \frac{f(x)}{g(x)} \, dx \neq \frac{l_1}{l_2} \] This statement is also generally false unless specific conditions are met. ### Conclusion Based on the evaluations: 1. The integral of the sum is \( l_1 + l_2 \). 2. The integral of the product and the integral of the quotient cannot be expressed as simple products or ratios of \( l_1 \) and \( l_2 \). Thus, the correct conclusion is: \[ \int_{a}^{b} (f(x) + g(x)) \, dx = l_1 + l_2 \] ### Final Answer The correct option is: \[ \int_{a}^{b} (f(x) + g(x)) \, dx = l_1 + l_2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b) x dx

int_(a)^(b)cos x dx

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

int_(a)^(b) sin x dx

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

Let int_(a)^(b)f(x)dx=int_(a+c)^(b+c)f(x-c)dx . Then the value of int_(0)^(pi)sin^(2010)x*cos^(2009)xdx is

If int_(0)^(1) f(x)=M,int_(0)^(1) g(x)dx=N , then which of the following is correct ?

Which of the following is incorrect? int_(a+ c)^(b+c)f(x)dx=int_a^bf(x+c)dx int_(ac)^(b c)f(x)dx=cint_a^bf(c x)dx int_(-a)^af(x)dx=1/2int_(-a)^a(f(x)+f(-x)dx None of these

Statement-1: int_(0)^(1)(cos x)/(1+x^(2))dxgt(pi)/(4)cos1 Statement-2: If f(x) and g(x) are continuous on [a,b], then int_(a)^(b) f(x) g(x)dx=f(c )int_(a)^(b)g(x) for some c in (a,b) .

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate the following definite integral: int(-sqrt(2))^(sqrt(2))(2...

    Text Solution

    |

  2. Evaluate int(-2)^(2)(d x)/(4+ x^(2))directly as well as by

    Text Solution

    |

  3. If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x)dx = l(2) then :

    Text Solution

    |

  4. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  5. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  6. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  7. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  8. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  9. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  10. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  11. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  12. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  13. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  14. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  15. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  16. The value of int(0)^(2)[x^(2)-1]dx, where [x] denotes the greatest in...

    Text Solution

    |

  17. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  18. If af(x)+bf((1)/(x))=(1)/(x)-5,x ne 0,a ne b, then overset(2)underset(...

    Text Solution

    |

  19. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  20. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |