Home
Class 12
MATHS
(1)/(c )int(ac)^(bc)f((x)/(c ))dx=...

`(1)/(c )int_(ac)^(bc)f((x)/(c ))dx=`

A

`c int_(a)^(b)f(cx)dx`

B

`(1)/(c )int_(a)^(b)f((x)/(c ))dx`

C

`(1)/(c )int_(a)^(b)f(cx)dx`

D

`c int_(a)^(b)f((x)/(c ))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \frac{1}{c} \int_{ac}^{bc} f\left(\frac{x}{c}\right) \, dx, \] we will perform a substitution to simplify the expression. ### Step 1: Substitute \( t = \frac{x}{c} \) Let \( t = \frac{x}{c} \). Then, we can express \( x \) in terms of \( t \): \[ x = ct. \] ### Step 2: Differentiate to find \( dx \) Differentiating both sides with respect to \( t \): \[ dx = c \, dt. \] ### Step 3: Change the limits of integration Now, we need to change the limits of integration. When \( x = ac \): \[ t = \frac{ac}{c} = a. \] When \( x = bc \): \[ t = \frac{bc}{c} = b. \] ### Step 4: Substitute into the integral Now substitute \( x \) and \( dx \) in the integral: \[ \frac{1}{c} \int_{ac}^{bc} f\left(\frac{x}{c}\right) \, dx = \frac{1}{c} \int_{a}^{b} f(t) \cdot (c \, dt). \] ### Step 5: Simplify the expression The \( c \) in the numerator and denominator cancels out: \[ = \int_{a}^{b} f(t) \, dt. \] ### Step 6: Change \( t \) back to \( x \) Since \( t \) was just a substitution, we can rename it back to \( x \): \[ = \int_{a}^{b} f(x) \, dx. \] ### Final Result Thus, we conclude that: \[ \frac{1}{c} \int_{ac}^{bc} f\left(\frac{x}{c}\right) \, dx = \int_{a}^{b} f(x) \, dx. \] ### Conclusion The correct answer is option d: \[ \int_{a}^{b} f(x) \, dx. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let int_(a)^(b)f(x)dx=int_(a+c)^(b+c)f(x-c)dx . Then the value of int_(0)^(pi)sin^(2010)x*cos^(2009)xdx is

int_(a+c)^(b+c) f(x) dx is equal to

Which of the following is incorrect? int_(a+ c)^(b+c)f(x)dx=int_a^bf(x+c)dx int_(ac)^(b c)f(x)dx=cint_a^bf(c x)dx int_(-a)^af(x)dx=1/2int_(-a)^a(f(x)+f(-x)dx None of these

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c)(f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area bounded by f(x)=(x^(3))/(3)-x^(2)+a and the straight lines x=0, x=2, and the x-axis is minimum, then the value of a is

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c) (f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area enclosed by f(x)= sin x + cos x, y=a between two consecutive points of extremum is minimum, then the value of a is

Prove that int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx , and when f(x) is odd function, int_(-a)^af(x)dx=0

Let the definite integral be defined by the formula int_(a)^(b)f(x)dx=(b-a)/2(f(a)+f(b)) . For more accurate result, for c epsilon (a,b), we can use int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx=F(c) so that for c=(a+b)/2 we get int_(a)^(b)f(x)dx=(b-a)/4(f(a)+f(b)+2f(c)) . If f''(x)lt0 AA x epsilon (a,b) and c is a point such that altcltb , and (c,f(c)) is the point lying on the curve for which F(c) is maximum then f'(c) is equal to

If a lt b lt c in R and f (a + b +c - x) = f (x) for all, x then int_(a)^(b) (x(f(x) + f(x + c))dx)/(a + b) is:

If f(x) is a continuous function AAx in R , then which of the following is (are) true, (a) int_4^(16)f(sqrt(x))dx=4cf(c) for some c in (2,4) (b) int_4^(16)f(sqrt(x))dx=4cf(c) for some c in (2,16) (c) int_4^(16)f(sqrt(x))dx=6(2-cf^(prime)(c)) for some c in (4,16), if f(2)=f(4) (d) int_4^(16)f(sqrt(x))dx=6(2-cf^(prime)(c)) for some c in (2,4), if f(2)=f(4)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Evaluate int(-2)^(2)(d x)/(4+ x^(2))directly as well as by

    Text Solution

    |

  2. If int(a)^(b)f(dx)dx=l(1), int(a)^(b)g(x)dx = l(2) then :

    Text Solution

    |

  3. (1)/(c )int(ac)^(bc)f((x)/(c ))dx=

    Text Solution

    |

  4. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  5. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  6. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  7. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  8. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  9. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  10. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  11. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  12. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  13. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  14. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  15. The value of int(0)^(2)[x^(2)-1]dx, where [x] denotes the greatest in...

    Text Solution

    |

  16. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  17. If af(x)+bf((1)/(x))=(1)/(x)-5,x ne 0,a ne b, then overset(2)underset(...

    Text Solution

    |

  18. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  19. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |

  20. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |