Home
Class 12
MATHS
int(0)^(2pi)[|sin x|+|cos x|]dx, where [...

`int_(0)^(2pi)[|sin x|+|cos x|]dx`, where [.] denotes the greatest integer function, is equal to :

A

`pi`

B

`2pi`

C

`pi//sqrt(2)`

D

`pi sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2\pi} \left\lfloor |\sin x| + |\cos x| \right\rfloor \, dx \), we will follow these steps: ### Step 1: Analyze the function \( |\sin x| + |\cos x| \) The function \( |\sin x| + |\cos x| \) varies between certain bounds. We know that both \( |\sin x| \) and \( |\cos x| \) reach their maximum value of 1. Therefore, we can establish the following inequalities: \[ 1 \leq |\sin x| + |\cos x| \leq \sqrt{2} \] ### Step 2: Determine the range of \( |\sin x| + |\cos x| \) The minimum value occurs when either \( \sin x \) or \( \cos x \) is zero, and the other is 1. The maximum value occurs when both \( \sin x \) and \( \cos x \) are equal, which happens at \( x = \frac{\pi}{4} + n\frac{\pi}{2} \) for integers \( n \). Calculating the maximum: \[ |\sin x| + |\cos x| = \sqrt{2} \quad \text{(at } x = \frac{\pi}{4}, \frac{5\pi}{4} \text{)} \] Thus, we have: \[ 1 \leq |\sin x| + |\cos x| < \sqrt{2} \approx 1.414 \] ### Step 3: Apply the greatest integer function Since \( |\sin x| + |\cos x| \) is always greater than or equal to 1 and less than \( \sqrt{2} \), we can conclude: \[ \left\lfloor |\sin x| + |\cos x| \right\rfloor = 1 \quad \text{for all } x \in [0, 2\pi] \] ### Step 4: Evaluate the integral Now, we can evaluate the integral: \[ \int_{0}^{2\pi} \left\lfloor |\sin x| + |\cos x| \right\rfloor \, dx = \int_{0}^{2\pi} 1 \, dx \] Calculating this integral: \[ \int_{0}^{2\pi} 1 \, dx = [x]_{0}^{2\pi} = 2\pi - 0 = 2\pi \] ### Final Answer Thus, the value of the integral is: \[ \boxed{2\pi} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

int_(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. int(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

    Text Solution

    |

  2. overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

    Text Solution

    |

  3. int(0)^(2pi)[|sin x|+|cos x|]dx, where [.] denotes the greatest intege...

    Text Solution

    |

  4. If f(pi)=2 and int(0)^(pi)(f(x)+f''(x))sin x dx=5, then f(0) is equal ...

    Text Solution

    |

  5. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then underset(...

    Text Solution

    |

  6. Evaluate: int0^(4pi)(dx)/(cos^2x(2+tan^2x)

    Text Solution

    |

  7. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  8. The value of int(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the g...

    Text Solution

    |

  9. If f(x) is continuous for all real values of x , then sum(r=1)^nint0^...

    Text Solution

    |

  10. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  11. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  12. The value of int(0)^(2)[x^(2)-1]dx, where [x] denotes the greatest in...

    Text Solution

    |

  13. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  14. If af(x)+bf((1)/(x))=(1)/(x)-5,x ne 0,a ne b, then overset(2)underset(...

    Text Solution

    |

  15. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  16. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |

  17. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |

  18. overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  19. Let I=int(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx, where p, q, ...

    Text Solution

    |

  20. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |