Home
Class 12
MATHS
The value of int(0)^(2)[x^(2)-1]dx, whe...

The value of `int_(0)^(2)[x^(2)-1]dx`, where [x] denotes the greatest integer function, is given by:

A

`3-sqrt(3)-sqrt(2)`

B

2

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} [x^2 - 1] \, dx \), where \([x]\) denotes the greatest integer function, we first need to analyze the expression inside the integral. ### Step 1: Determine the intervals for \( x^2 - 1 \) The expression \( x^2 - 1 \) can be rewritten as: - At \( x = 0 \): \( 0^2 - 1 = -1 \) - At \( x = 1 \): \( 1^2 - 1 = 0 \) - At \( x = \sqrt{2} \): \( (\sqrt{2})^2 - 1 = 1 \) - At \( x = \sqrt{3} \): \( (\sqrt{3})^2 - 1 = 2 \) - At \( x = 2 \): \( 2^2 - 1 = 3 \) Thus, we can break the integral into intervals based on the values of \( x^2 - 1 \): - From \( 0 \) to \( 1 \): \( x^2 - 1 \) goes from \(-1\) to \(0\) - From \( 1 \) to \( \sqrt{2} \): \( x^2 - 1 \) goes from \(0\) to \(1\) - From \( \sqrt{2} \) to \( \sqrt{3} \): \( x^2 - 1 \) goes from \(1\) to \(2\) - From \( \sqrt{3} \) to \( 2 \): \( x^2 - 1 \) goes from \(2\) to \(3\) ### Step 2: Set up the integral We can express the integral as: \[ I = \int_{0}^{1} [x^2 - 1] \, dx + \int_{1}^{\sqrt{2}} [x^2 - 1] \, dx + \int_{\sqrt{2}}^{\sqrt{3}} [x^2 - 1] \, dx + \int_{\sqrt{3}}^{2} [x^2 - 1] \, dx \] ### Step 3: Evaluate each integral 1. **From \( 0 \) to \( 1 \)**: \[ [x^2 - 1] = -1 \quad \text{(since } -1 \leq x^2 - 1 < 0\text{)} \] \[ \int_{0}^{1} -1 \, dx = -x \bigg|_{0}^{1} = -1 \] 2. **From \( 1 \) to \( \sqrt{2} \)**: \[ [x^2 - 1] = 0 \quad \text{(since } 0 \leq x^2 - 1 < 1\text{)} \] \[ \int_{1}^{\sqrt{2}} 0 \, dx = 0 \] 3. **From \( \sqrt{2} \) to \( \sqrt{3} \)**: \[ [x^2 - 1] = 1 \quad \text{(since } 1 \leq x^2 - 1 < 2\text{)} \] \[ \int_{\sqrt{2}}^{\sqrt{3}} 1 \, dx = x \bigg|_{\sqrt{2}}^{\sqrt{3}} = \sqrt{3} - \sqrt{2} \] 4. **From \( \sqrt{3} \) to \( 2 \)**: \[ [x^2 - 1] = 2 \quad \text{(since } 2 \leq x^2 - 1 < 3\text{)} \] \[ \int_{\sqrt{3}}^{2} 2 \, dx = 2x \bigg|_{\sqrt{3}}^{2} = 2(2) - 2\sqrt{3} = 4 - 2\sqrt{3} \] ### Step 4: Combine the results Now we combine all the results: \[ I = (-1) + 0 + (\sqrt{3} - \sqrt{2}) + (4 - 2\sqrt{3}) \] \[ I = -1 + \sqrt{3} - \sqrt{2} + 4 - 2\sqrt{3} \] \[ I = 3 - \sqrt{3} - \sqrt{2} \] ### Final Answer Thus, the value of the integral is: \[ I = 3 - \sqrt{3} - \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The value of int(0)^(2pi)[2 sin x]dx, where [.] represent the greatest...

    Text Solution

    |

  2. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  3. The value of int(0)^(2)[x^(2)-1]dx, where [x] denotes the greatest in...

    Text Solution

    |

  4. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  5. If af(x)+bf((1)/(x))=(1)/(x)-5,x ne 0,a ne b, then overset(2)underset(...

    Text Solution

    |

  6. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  7. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |

  8. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |

  9. overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  10. Let I=int(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx, where p, q, ...

    Text Solution

    |

  11. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |

  12. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  13. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  14. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  15. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  16. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  17. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  18. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  19. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  20. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |