Home
Class 12
MATHS
Let f(x) be a continuous function such t...

Let `f(x)` be a continuous function such that `f(a-x)+f(x)=0` for all `x in [0,a]`. Then `int_0^a dx/(1+e^(f(x)))=` (A) `a` (B) `a/2` (C) `1/2f(a)` (D) none of these

A

a

B

`(a)/(2)`

C

f (a)

D

`(1)/(2) f(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \int_0^a \frac{dx}{1 + e^{f(x)}} \] given the condition that \( f(a-x) + f(x) = 0 \) for all \( x \in [0, a] \). ### Step 1: Use the property of the function From the given condition, we can express \( f(a-x) \) as: \[ f(a-x) = -f(x) \] ### Step 2: Rewrite the integral Now, we can rewrite the integral \( I \) by substituting \( x \) with \( a - x \): \[ I = \int_0^a \frac{dx}{1 + e^{f(a-x)}} \] ### Step 3: Substitute \( f(a-x) \) Using the property we derived, we substitute \( f(a-x) \): \[ I = \int_0^a \frac{dx}{1 + e^{-f(x)}} \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^a \frac{dx}{1 + e^{f(x)}} \) 2. \( I = \int_0^a \frac{dx}{1 + e^{-f(x)}} \) ### Step 5: Add the two integrals Adding these two equations, we get: \[ 2I = \int_0^a \left( \frac{dx}{1 + e^{f(x)}} + \frac{dx}{1 + e^{-f(x)}} \right) \] ### Step 6: Simplify the expression Now, we simplify the right-hand side: \[ \frac{1}{1 + e^{f(x)}} + \frac{1}{1 + e^{-f(x)}} = \frac{(1 + e^{-f(x)}) + (1 + e^{f(x)})}{(1 + e^{f(x)})(1 + e^{-f(x)})} \] This simplifies to: \[ \frac{2}{1 + e^{f(x)} + e^{-f(x)} + 1} = \frac{2}{2 + e^{f(x)} + e^{-f(x)}} \] Using the identity \( e^{f(x)} + e^{-f(x)} = 2 \cosh(f(x)) \): \[ = \frac{2}{2 + 2 \cosh(f(x))} = \frac{1}{1 + \cosh(f(x))} \] ### Step 7: Integrate Thus, we have: \[ 2I = \int_0^a \frac{2}{2 + 2 \cosh(f(x))} dx = \int_0^a dx = a \] ### Step 8: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{a}{2} \] ### Conclusion Thus, the value of the integral is: \[ \int_0^a \frac{dx}{1 + e^{f(x)}} = \frac{a}{2} \] The correct answer is (B) \( \frac{a}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x))=1 for all x in[0,1] then:

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral overset(a)underset(0)int (1)/(1+e^(f(x)))dx is equal to

Let f(x) be a continuous function in R such that f(x)+f(y)=f(x+y) , then int_-2^2 f(x)dx= (A) 2int_0^2 f(x)dx (B) 0 (C) 2f(2) (D) none of these

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f(x)=max. {2-x,2,1+x} then int_(-1)^1 f(x)dx= (A) 0 (B) 2 (C) 9/2 (D) none of these

Let f:[1,2] to [0,oo) be a continuous function such that f(x)=f(1-x) for all x in [-1,2]. Let R_(1)=int_(-1)^(2) xf(x) dx, and R_(2) be the area of the region bounded by y=f(x),x=-1,x=2 and the x-axis . Then,

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. If overset(b)underset(a)int (x^(n))/(x^(4)+(16-x)^(n))dx=6, then

    Text Solution

    |

  2. If af(x)+bf((1)/(x))=(1)/(x)-5,x ne 0,a ne b, then overset(2)underset(...

    Text Solution

    |

  3. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  4. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |

  5. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |

  6. overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  7. Let I=int(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx, where p, q, ...

    Text Solution

    |

  8. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |

  9. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  10. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  11. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  12. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  13. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  14. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  15. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  16. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  17. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  18. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  19. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  20. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |