Home
Class 12
MATHS
int(1)^(3)|(2-x)log(e )x|dx is equal to...

`int_(1)^(3)|(2-x)log_(e )x|dx` is equal to:

A

`(3)/(2)log_(e )3+(1)/(2)`

B

`"log"_(e )(16)/(3sqrt(2))(1)/(2)`

C

`-(3)/(2)log_(e )3-(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{3} |(2-x) \log_e x| \, dx \), we first need to analyze the expression inside the absolute value, \( (2-x) \log_e x \). ### Step 1: Determine the intervals for the absolute value The expression \( (2-x) \) changes sign at \( x = 2 \). Therefore, we need to evaluate the integral in two parts: 1. From \( x = 1 \) to \( x = 2 \) where \( (2-x) \) is positive. 2. From \( x = 2 \) to \( x = 3 \) where \( (2-x) \) is negative. Thus, we can rewrite the integral as: \[ \int_{1}^{3} |(2-x) \log_e x| \, dx = \int_{1}^{2} (2-x) \log_e x \, dx + \int_{2}^{3} -(2-x) \log_e x \, dx \] ### Step 2: Evaluate the first integral \( \int_{1}^{2} (2-x) \log_e x \, dx \) Using integration by parts, let: - \( u = \log_e x \) ⇒ \( du = \frac{1}{x} \, dx \) - \( dv = (2-x) \, dx \) ⇒ \( v = 2x - \frac{x^2}{2} \) Now applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] Substituting the values: \[ \int (2-x) \log_e x \, dx = \left( \log_e x \left( 2x - \frac{x^2}{2} \right) \right) \bigg|_{1}^{2} - \int (2x - \frac{x^2}{2}) \cdot \frac{1}{x} \, dx \] Calculating the boundary term: \[ = \left( \log_e 2 \left( 2(2) - \frac{2^2}{2} \right) - \log_e 1 \left( 2(1) - \frac{1^2}{2} \right) \right) \] \[ = \left( \log_e 2 \cdot 2 - 0 \right) = 2 \log_e 2 \] Now, we need to evaluate the integral: \[ \int (2 - \frac{x}{2}) \, dx = \int 2 \, dx - \frac{1}{2} \int x \, dx = 2x - \frac{x^2}{4} \bigg|_{1}^{2} \] Calculating this: \[ = \left( 2(2) - \frac{2^2}{4} \right) - \left( 2(1) - \frac{1^2}{4} \right) = (4 - 1) - (2 - \frac{1}{4}) = 3 - 1.75 = 1.25 \] Thus, \[ \int_{1}^{2} (2-x) \log_e x \, dx = 2 \log_e 2 - 1.25 \] ### Step 3: Evaluate the second integral \( \int_{2}^{3} -(2-x) \log_e x \, dx \) This can be rewritten as: \[ \int_{2}^{3} (x-2) \log_e x \, dx \] Using integration by parts again: Let: - \( u = \log_e x \) ⇒ \( du = \frac{1}{x} \, dx \) - \( dv = (x-2) \, dx \) ⇒ \( v = \frac{x^2}{2} - 2x \) Now applying integration by parts: \[ \int (x-2) \log_e x \, dx = \left( \log_e x \left( \frac{x^2}{2} - 2x \right) \right) \bigg|_{2}^{3} - \int \left( \frac{x^2}{2} - 2x \right) \cdot \frac{1}{x} \, dx \] Calculating the boundary term: \[ = \left( \log_e 3 \left( \frac{3^2}{2} - 2(3) \right) - \log_e 2 \left( \frac{2^2}{2} - 2(2) \right) \right) \] \[ = \left( \log_e 3 \cdot \left( \frac{9}{2} - 6 \right) - \log_e 2 \cdot (2 - 4) \right) = \left( \log_e 3 \cdot \left( \frac{-3}{2} \right) + 2 \log_e 2 \right) \] Now, we need to evaluate the integral: \[ \int \left( \frac{x^2}{2} - 2x \right) \cdot \frac{1}{x} \, dx = \int \left( \frac{x}{2} - 2 \right) \, dx = \frac{x^2}{4} - 2x \bigg|_{2}^{3} \] Calculating this: \[ = \left( \frac{3^2}{4} - 2(3) \right) - \left( \frac{2^2}{4} - 2(2) \right) = \left( \frac{9}{4} - 6 \right) - \left( 1 - 4 \right) = \left( \frac{9}{4} - \frac{24}{4} \right) - (-3) = \left( -\frac{15}{4} + 3 \right) = \frac{3}{4} \] Thus, \[ \int_{2}^{3} (x-2) \log_e x \, dx = \left( -\frac{3}{2} \log_e 3 + 2 \log_e 2 \right) - \frac{3}{4} \] ### Step 4: Combine the results Now we can combine both parts: \[ \int_{1}^{3} |(2-x) \log_e x| \, dx = \left( 2 \log_e 2 - 1.25 \right) + \left( -\frac{3}{2} \log_e 3 + 2 \log_e 2 - \frac{3}{4} \right) \] Combine like terms: \[ = 4 \log_e 2 - \frac{3}{2} \log_e 3 - 1.25 - \frac{3}{4} \] Calculating the constants: \[ = 4 \log_e 2 - \frac{3}{2} \log_e 3 - \frac{5}{4} \] ### Final Answer Thus, the value of the integral is: \[ \int_{1}^{3} |(2-x) \log_e x| \, dx = 4 \log_e 2 - \frac{3}{2} \log_e 3 - \frac{5}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int cos (log_e x)dx is equal to

intx^(x)(1+log_(e)x) dx is equal to

int_(1)^(4) log_(e)[x]dx equals

int(1)/(x cos^(2)(log_(e)x))dx

int_(1//2)^(2) |log_(10)x|dx equals to

int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

int(x+1)^(2)e^(x)dx is equal to

int_(pi//6)^(pi//3)1/(sin2x)dx\ is equal to a. (log)_e3 b. (log)_"e"sqrt(3) c. 1/2log(-1) d. log(-1)

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in...

    Text Solution

    |

  2. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |

  3. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |

  4. overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  5. Let I=int(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx, where p, q, ...

    Text Solution

    |

  6. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |

  7. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  8. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  9. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  10. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  11. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  12. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  13. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  14. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  15. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  16. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  17. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  18. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  19. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  20. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |