Home
Class 12
MATHS
overset(pi)underset(0)int (1)/(1+3^(cosx...

`overset(pi)underset(0)int (1)/(1+3^(cosx))` dx is equal to

A

`pi`

B

0

C

`(pi)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^\pi \frac{1}{1 + 3^{\cos x}} \, dx \), we can use a symmetry property of definite integrals. Let's go through the steps: ### Step 1: Define the Integral Let \[ I = \int_0^\pi \frac{1}{1 + 3^{\cos x}} \, dx \] ### Step 2: Use the Symmetry Property We can use the property of definite integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \pi \). Thus, we have: \[ I = \int_0^\pi \frac{1}{1 + 3^{\cos(\pi - x)}} \, dx \] ### Step 3: Simplify the Cosine Term Using the identity \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_0^\pi \frac{1}{1 + 3^{-\cos x}} \, dx \] ### Step 4: Rewrite the Integral We can rewrite the expression \( 3^{-\cos x} \) as \( \frac{1}{3^{\cos x}} \): \[ I = \int_0^\pi \frac{1}{1 + \frac{1}{3^{\cos x}}} \, dx \] This simplifies to: \[ I = \int_0^\pi \frac{3^{\cos x}}{3^{\cos x} + 1} \, dx \] ### Step 5: Combine Both Forms of the Integral Now we have two expressions for \( I \): 1. \( I = \int_0^\pi \frac{1}{1 + 3^{\cos x}} \, dx \) 2. \( I = \int_0^\pi \frac{3^{\cos x}}{3^{\cos x} + 1} \, dx \) ### Step 6: Add the Two Integrals Adding these two expressions: \[ 2I = \int_0^\pi \left( \frac{1}{1 + 3^{\cos x}} + \frac{3^{\cos x}}{3^{\cos x} + 1} \right) \, dx \] This simplifies to: \[ 2I = \int_0^\pi 1 \, dx \] ### Step 7: Evaluate the Integral The integral of 1 from 0 to \( \pi \) is simply: \[ 2I = \pi \] ### Step 8: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^\pi \frac{1}{1 + 3^{\cos x}} \, dx = \frac{\pi}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx| is equal to

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equal to

int(1)/(cosx-sinx)dx is equal to

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

int_(0)^(pi)|1+2cosx| dx is equal to :

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

The value of the definite integral overset(3pi//4)underset(0)int(1+x)sin x+(1-x) cos x)dx is

overset(pi//2)underset(-pi//2)int (cos x)/(1+e^(x))dx=

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. The equation int(-pi//4)^(pi//4){a|sin x |+(b sin x )/(1+ cos^(2)+c} d...

    Text Solution

    |

  2. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |

  3. overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  4. Let I=int(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx, where p, q, ...

    Text Solution

    |

  5. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |

  6. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  7. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  8. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  9. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  10. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  11. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  12. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  13. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  14. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  15. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  16. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  17. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  18. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  19. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  20. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |