Home
Class 12
MATHS
Let I=int(-a)^(a) (p tan^(3) x + q cos^(...

Let `I=int_(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx`, where p, q, r are arbitrary constants. The numerical value of I depends on:

A

p, q, r, a

B

q, r, a

C

q, a

D

p, r, a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-a}^{a} (p \tan^3 x + q \cos^2 x + r \sin x) \, dx \), we will analyze the integrand to determine which terms contribute to the value of the integral. ### Step 1: Analyze the integrand The integrand consists of three terms: \( p \tan^3 x \), \( q \cos^2 x \), and \( r \sin x \). We need to determine whether each term is an even function or an odd function. ### Step 2: Determine the nature of each term 1. **For \( p \tan^3 x \)**: - Check if it is odd or even: \[ f_1(-x) = \tan^3(-x) = (-\tan x)^3 = -\tan^3 x = -f_1(x) \] - Conclusion: \( p \tan^3 x \) is an odd function. 2. **For \( q \cos^2 x \)**: - Check if it is odd or even: \[ f_2(-x) = \cos^2(-x) = \cos^2 x = f_2(x) \] - Conclusion: \( q \cos^2 x \) is an even function. 3. **For \( r \sin x \)**: - Check if it is odd or even: \[ f_3(-x) = \sin(-x) = -\sin x = -f_3(x) \] - Conclusion: \( r \sin x \) is an odd function. ### Step 3: Apply properties of definite integrals Using the properties of definite integrals: - The integral of an odd function over a symmetric interval around zero is zero. - The integral of an even function can be simplified as: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] ### Step 4: Evaluate the integral Now we can break down the integral \( I \): \[ I = \int_{-a}^{a} (p \tan^3 x) \, dx + \int_{-a}^{a} (q \cos^2 x) \, dx + \int_{-a}^{a} (r \sin x) \, dx \] - The first term \( \int_{-a}^{a} (p \tan^3 x) \, dx = 0 \) (odd function). - The second term \( \int_{-a}^{a} (q \cos^2 x) \, dx = 2 \int_{0}^{a} (q \cos^2 x) \, dx \) (even function). - The third term \( \int_{-a}^{a} (r \sin x) \, dx = 0 \) (odd function). Thus, we have: \[ I = 0 + 2 \int_{0}^{a} (q \cos^2 x) \, dx + 0 = 2 \int_{0}^{a} (q \cos^2 x) \, dx \] ### Step 5: Simplify the integral Now, we can compute the integral: \[ I = 2q \int_{0}^{a} \cos^2 x \, dx \] Using the identity \( \cos^2 x = \frac{1 + \cos 2x}{2} \): \[ I = 2q \int_{0}^{a} \frac{1 + \cos 2x}{2} \, dx = q \int_{0}^{a} (1 + \cos 2x) \, dx \] Calculating the integral: \[ = q \left[ x + \frac{\sin 2x}{2} \right]_{0}^{a} = q \left( a + \frac{\sin 2a}{2} - 0 \right) = q \left( a + \frac{\sin 2a}{2} \right) \] ### Conclusion The numerical value of \( I \) depends on \( q \) and \( a \). Therefore, the answer is: **The numerical value of \( I \) depends on \( q \) and \( a \).**
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int((sin x)/(x))^(6)((x cos x - sin x)/(x^2)) dx is (where , c is an arbitrary constant)

Q. int_0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

Let I (a) =int_(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive real. The value of a for which I(a) attains its minimum value is

Prove that p x^(q-r)+q x^(r-p)+r x^(p-q)> p+q+r ,where p, q, r are distinct and x!=1.

Let f(x)=p[x]+qe^(-[x])+r|x|^(2) , where p,q and r are real constants, If f(x) is differential at x=0. Then,

Given : 1176 = 2^(p) . 3^(q) . 7^(r ) . Find : the numerical values of p,q and r.

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

If p(q-r)x^(2) + q(r-p)x+ r(p-q) = 0 has equal roots, then show that p, q, r are in H.P.

If 3+4i is a root of equation x^(2)+px+q=0 where p, q in R then

The value of int_(0)^(pi)(Sigma_(r=0)^(3)a_(r)cos^(3-r)x sin^(r)x)dx depends upon

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. int(1)^(3)|(2-x)log(e )x|dx is equal to:

    Text Solution

    |

  2. overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  3. Let I=int(-a)^(a) (p tan^(3) x + q cos^(2)x + r sin x)dx, where p, q, ...

    Text Solution

    |

  4. The value of int(0)^(100)[tan^(-1)x]dx is, (where [.] denotes greatest...

    Text Solution

    |

  5. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  6. The value of the integral overset(e )underset(1//e)int |logx|dx, is

    Text Solution

    |

  7. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  8. If f(x)=ax^(3)+bx^(2)+cx have relative extrema x = 1 and at x = 5. If...

    Text Solution

    |

  9. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  10. int(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx, where [.] denotes the greate...

    Text Solution

    |

  11. Evaluate int(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x...

    Text Solution

    |

  12. Evaluate : int0^(pi/4)(sinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  13. If I(n)=overset(pi//4)underset(0)int tan ^(n) x dx, lim(n to oo) n(I(n...

    Text Solution

    |

  14. int(-pi)^(pi) ( e^(sin x ))/( e^(sinx) + e^(-sinx))dx is equal to

    Text Solution

    |

  15. If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest i...

    Text Solution

    |

  16. if I = int(-3) ^2 (|x+1|+|x+2|+|x-1|)dx

    Text Solution

    |

  17. if I = int0 ^1.7 [x^2]dx, then I equal is

    Text Solution

    |

  18. I1=int0^(pi/2)ln(sinx)dx ,I2=int(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then ...

    Text Solution

    |

  19. underset(0)overset(1)intlnsin(pi/2x) dx

    Text Solution

    |

  20. If int(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

    Text Solution

    |